This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping of adjoints of bounded linear operators is one-to-one onto. (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjbd1o | ⊢ ( adjℎ ↾ BndLinOp ) : BndLinOp –1-1-onto→ BndLinOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adj1o | ⊢ adjℎ : dom adjℎ –1-1-onto→ dom adjℎ | |
| 2 | f1of1 | ⊢ ( adjℎ : dom adjℎ –1-1-onto→ dom adjℎ → adjℎ : dom adjℎ –1-1→ dom adjℎ ) | |
| 3 | 1 2 | ax-mp | ⊢ adjℎ : dom adjℎ –1-1→ dom adjℎ |
| 4 | bdopssadj | ⊢ BndLinOp ⊆ dom adjℎ | |
| 5 | f1ores | ⊢ ( ( adjℎ : dom adjℎ –1-1→ dom adjℎ ∧ BndLinOp ⊆ dom adjℎ ) → ( adjℎ ↾ BndLinOp ) : BndLinOp –1-1-onto→ ( adjℎ “ BndLinOp ) ) | |
| 6 | 3 4 5 | mp2an | ⊢ ( adjℎ ↾ BndLinOp ) : BndLinOp –1-1-onto→ ( adjℎ “ BndLinOp ) |
| 7 | vex | ⊢ 𝑦 ∈ V | |
| 8 | 7 | elima | ⊢ ( 𝑦 ∈ ( adjℎ “ BndLinOp ) ↔ ∃ 𝑥 ∈ BndLinOp 𝑥 adjℎ 𝑦 ) |
| 9 | f1ofn | ⊢ ( adjℎ : dom adjℎ –1-1-onto→ dom adjℎ → adjℎ Fn dom adjℎ ) | |
| 10 | 1 9 | ax-mp | ⊢ adjℎ Fn dom adjℎ |
| 11 | bdopadj | ⊢ ( 𝑥 ∈ BndLinOp → 𝑥 ∈ dom adjℎ ) | |
| 12 | fnbrfvb | ⊢ ( ( adjℎ Fn dom adjℎ ∧ 𝑥 ∈ dom adjℎ ) → ( ( adjℎ ‘ 𝑥 ) = 𝑦 ↔ 𝑥 adjℎ 𝑦 ) ) | |
| 13 | 10 11 12 | sylancr | ⊢ ( 𝑥 ∈ BndLinOp → ( ( adjℎ ‘ 𝑥 ) = 𝑦 ↔ 𝑥 adjℎ 𝑦 ) ) |
| 14 | 13 | rexbiia | ⊢ ( ∃ 𝑥 ∈ BndLinOp ( adjℎ ‘ 𝑥 ) = 𝑦 ↔ ∃ 𝑥 ∈ BndLinOp 𝑥 adjℎ 𝑦 ) |
| 15 | adjbdlnb | ⊢ ( 𝑥 ∈ BndLinOp ↔ ( adjℎ ‘ 𝑥 ) ∈ BndLinOp ) | |
| 16 | eleq1 | ⊢ ( ( adjℎ ‘ 𝑥 ) = 𝑦 → ( ( adjℎ ‘ 𝑥 ) ∈ BndLinOp ↔ 𝑦 ∈ BndLinOp ) ) | |
| 17 | 15 16 | bitrid | ⊢ ( ( adjℎ ‘ 𝑥 ) = 𝑦 → ( 𝑥 ∈ BndLinOp ↔ 𝑦 ∈ BndLinOp ) ) |
| 18 | 17 | biimpcd | ⊢ ( 𝑥 ∈ BndLinOp → ( ( adjℎ ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ BndLinOp ) ) |
| 19 | 18 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ BndLinOp ( adjℎ ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ BndLinOp ) |
| 20 | adjbdln | ⊢ ( 𝑦 ∈ BndLinOp → ( adjℎ ‘ 𝑦 ) ∈ BndLinOp ) | |
| 21 | bdopadj | ⊢ ( 𝑦 ∈ BndLinOp → 𝑦 ∈ dom adjℎ ) | |
| 22 | adjadj | ⊢ ( 𝑦 ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑦 ) ) = 𝑦 ) | |
| 23 | 21 22 | syl | ⊢ ( 𝑦 ∈ BndLinOp → ( adjℎ ‘ ( adjℎ ‘ 𝑦 ) ) = 𝑦 ) |
| 24 | fveqeq2 | ⊢ ( 𝑥 = ( adjℎ ‘ 𝑦 ) → ( ( adjℎ ‘ 𝑥 ) = 𝑦 ↔ ( adjℎ ‘ ( adjℎ ‘ 𝑦 ) ) = 𝑦 ) ) | |
| 25 | 24 | rspcev | ⊢ ( ( ( adjℎ ‘ 𝑦 ) ∈ BndLinOp ∧ ( adjℎ ‘ ( adjℎ ‘ 𝑦 ) ) = 𝑦 ) → ∃ 𝑥 ∈ BndLinOp ( adjℎ ‘ 𝑥 ) = 𝑦 ) |
| 26 | 20 23 25 | syl2anc | ⊢ ( 𝑦 ∈ BndLinOp → ∃ 𝑥 ∈ BndLinOp ( adjℎ ‘ 𝑥 ) = 𝑦 ) |
| 27 | 19 26 | impbii | ⊢ ( ∃ 𝑥 ∈ BndLinOp ( adjℎ ‘ 𝑥 ) = 𝑦 ↔ 𝑦 ∈ BndLinOp ) |
| 28 | 8 14 27 | 3bitr2i | ⊢ ( 𝑦 ∈ ( adjℎ “ BndLinOp ) ↔ 𝑦 ∈ BndLinOp ) |
| 29 | 28 | eqriv | ⊢ ( adjℎ “ BndLinOp ) = BndLinOp |
| 30 | f1oeq3 | ⊢ ( ( adjℎ “ BndLinOp ) = BndLinOp → ( ( adjℎ ↾ BndLinOp ) : BndLinOp –1-1-onto→ ( adjℎ “ BndLinOp ) ↔ ( adjℎ ↾ BndLinOp ) : BndLinOp –1-1-onto→ BndLinOp ) ) | |
| 31 | 29 30 | ax-mp | ⊢ ( ( adjℎ ↾ BndLinOp ) : BndLinOp –1-1-onto→ ( adjℎ “ BndLinOp ) ↔ ( adjℎ ↾ BndLinOp ) : BndLinOp –1-1-onto→ BndLinOp ) |
| 32 | 6 31 | mpbi | ⊢ ( adjℎ ↾ BndLinOp ) : BndLinOp –1-1-onto→ BndLinOp |