This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping of adjoints of bounded linear operators is one-to-one onto. (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjbd1o | |- ( adjh |` BndLinOp ) : BndLinOp -1-1-onto-> BndLinOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adj1o | |- adjh : dom adjh -1-1-onto-> dom adjh |
|
| 2 | f1of1 | |- ( adjh : dom adjh -1-1-onto-> dom adjh -> adjh : dom adjh -1-1-> dom adjh ) |
|
| 3 | 1 2 | ax-mp | |- adjh : dom adjh -1-1-> dom adjh |
| 4 | bdopssadj | |- BndLinOp C_ dom adjh |
|
| 5 | f1ores | |- ( ( adjh : dom adjh -1-1-> dom adjh /\ BndLinOp C_ dom adjh ) -> ( adjh |` BndLinOp ) : BndLinOp -1-1-onto-> ( adjh " BndLinOp ) ) |
|
| 6 | 3 4 5 | mp2an | |- ( adjh |` BndLinOp ) : BndLinOp -1-1-onto-> ( adjh " BndLinOp ) |
| 7 | vex | |- y e. _V |
|
| 8 | 7 | elima | |- ( y e. ( adjh " BndLinOp ) <-> E. x e. BndLinOp x adjh y ) |
| 9 | f1ofn | |- ( adjh : dom adjh -1-1-onto-> dom adjh -> adjh Fn dom adjh ) |
|
| 10 | 1 9 | ax-mp | |- adjh Fn dom adjh |
| 11 | bdopadj | |- ( x e. BndLinOp -> x e. dom adjh ) |
|
| 12 | fnbrfvb | |- ( ( adjh Fn dom adjh /\ x e. dom adjh ) -> ( ( adjh ` x ) = y <-> x adjh y ) ) |
|
| 13 | 10 11 12 | sylancr | |- ( x e. BndLinOp -> ( ( adjh ` x ) = y <-> x adjh y ) ) |
| 14 | 13 | rexbiia | |- ( E. x e. BndLinOp ( adjh ` x ) = y <-> E. x e. BndLinOp x adjh y ) |
| 15 | adjbdlnb | |- ( x e. BndLinOp <-> ( adjh ` x ) e. BndLinOp ) |
|
| 16 | eleq1 | |- ( ( adjh ` x ) = y -> ( ( adjh ` x ) e. BndLinOp <-> y e. BndLinOp ) ) |
|
| 17 | 15 16 | bitrid | |- ( ( adjh ` x ) = y -> ( x e. BndLinOp <-> y e. BndLinOp ) ) |
| 18 | 17 | biimpcd | |- ( x e. BndLinOp -> ( ( adjh ` x ) = y -> y e. BndLinOp ) ) |
| 19 | 18 | rexlimiv | |- ( E. x e. BndLinOp ( adjh ` x ) = y -> y e. BndLinOp ) |
| 20 | adjbdln | |- ( y e. BndLinOp -> ( adjh ` y ) e. BndLinOp ) |
|
| 21 | bdopadj | |- ( y e. BndLinOp -> y e. dom adjh ) |
|
| 22 | adjadj | |- ( y e. dom adjh -> ( adjh ` ( adjh ` y ) ) = y ) |
|
| 23 | 21 22 | syl | |- ( y e. BndLinOp -> ( adjh ` ( adjh ` y ) ) = y ) |
| 24 | fveqeq2 | |- ( x = ( adjh ` y ) -> ( ( adjh ` x ) = y <-> ( adjh ` ( adjh ` y ) ) = y ) ) |
|
| 25 | 24 | rspcev | |- ( ( ( adjh ` y ) e. BndLinOp /\ ( adjh ` ( adjh ` y ) ) = y ) -> E. x e. BndLinOp ( adjh ` x ) = y ) |
| 26 | 20 23 25 | syl2anc | |- ( y e. BndLinOp -> E. x e. BndLinOp ( adjh ` x ) = y ) |
| 27 | 19 26 | impbii | |- ( E. x e. BndLinOp ( adjh ` x ) = y <-> y e. BndLinOp ) |
| 28 | 8 14 27 | 3bitr2i | |- ( y e. ( adjh " BndLinOp ) <-> y e. BndLinOp ) |
| 29 | 28 | eqriv | |- ( adjh " BndLinOp ) = BndLinOp |
| 30 | f1oeq3 | |- ( ( adjh " BndLinOp ) = BndLinOp -> ( ( adjh |` BndLinOp ) : BndLinOp -1-1-onto-> ( adjh " BndLinOp ) <-> ( adjh |` BndLinOp ) : BndLinOp -1-1-onto-> BndLinOp ) ) |
|
| 31 | 29 30 | ax-mp | |- ( ( adjh |` BndLinOp ) : BndLinOp -1-1-onto-> ( adjh " BndLinOp ) <-> ( adjh |` BndLinOp ) : BndLinOp -1-1-onto-> BndLinOp ) |
| 32 | 6 31 | mpbi | |- ( adjh |` BndLinOp ) : BndLinOp -1-1-onto-> BndLinOp |