This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adj1 | |- ( ( T e. dom adjh /\ A e. ~H /\ B e. ~H ) -> ( A .ih ( T ` B ) ) = ( ( ( adjh ` T ) ` A ) .ih B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funadj | |- Fun adjh |
|
| 2 | funfvop | |- ( ( Fun adjh /\ T e. dom adjh ) -> <. T , ( adjh ` T ) >. e. adjh ) |
|
| 3 | 1 2 | mpan | |- ( T e. dom adjh -> <. T , ( adjh ` T ) >. e. adjh ) |
| 4 | dfadj2 | |- adjh = { <. z , w >. | ( z : ~H --> ~H /\ w : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( z ` y ) ) = ( ( w ` x ) .ih y ) ) } |
|
| 5 | 3 4 | eleqtrdi | |- ( T e. dom adjh -> <. T , ( adjh ` T ) >. e. { <. z , w >. | ( z : ~H --> ~H /\ w : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( z ` y ) ) = ( ( w ` x ) .ih y ) ) } ) |
| 6 | fvex | |- ( adjh ` T ) e. _V |
|
| 7 | feq1 | |- ( z = T -> ( z : ~H --> ~H <-> T : ~H --> ~H ) ) |
|
| 8 | fveq1 | |- ( z = T -> ( z ` y ) = ( T ` y ) ) |
|
| 9 | 8 | oveq2d | |- ( z = T -> ( x .ih ( z ` y ) ) = ( x .ih ( T ` y ) ) ) |
| 10 | 9 | eqeq1d | |- ( z = T -> ( ( x .ih ( z ` y ) ) = ( ( w ` x ) .ih y ) <-> ( x .ih ( T ` y ) ) = ( ( w ` x ) .ih y ) ) ) |
| 11 | 10 | 2ralbidv | |- ( z = T -> ( A. x e. ~H A. y e. ~H ( x .ih ( z ` y ) ) = ( ( w ` x ) .ih y ) <-> A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( w ` x ) .ih y ) ) ) |
| 12 | 7 11 | 3anbi13d | |- ( z = T -> ( ( z : ~H --> ~H /\ w : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( z ` y ) ) = ( ( w ` x ) .ih y ) ) <-> ( T : ~H --> ~H /\ w : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( w ` x ) .ih y ) ) ) ) |
| 13 | feq1 | |- ( w = ( adjh ` T ) -> ( w : ~H --> ~H <-> ( adjh ` T ) : ~H --> ~H ) ) |
|
| 14 | fveq1 | |- ( w = ( adjh ` T ) -> ( w ` x ) = ( ( adjh ` T ) ` x ) ) |
|
| 15 | 14 | oveq1d | |- ( w = ( adjh ` T ) -> ( ( w ` x ) .ih y ) = ( ( ( adjh ` T ) ` x ) .ih y ) ) |
| 16 | 15 | eqeq2d | |- ( w = ( adjh ` T ) -> ( ( x .ih ( T ` y ) ) = ( ( w ` x ) .ih y ) <-> ( x .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` x ) .ih y ) ) ) |
| 17 | 16 | 2ralbidv | |- ( w = ( adjh ` T ) -> ( A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( w ` x ) .ih y ) <-> A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` x ) .ih y ) ) ) |
| 18 | 13 17 | 3anbi23d | |- ( w = ( adjh ` T ) -> ( ( T : ~H --> ~H /\ w : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( w ` x ) .ih y ) ) <-> ( T : ~H --> ~H /\ ( adjh ` T ) : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` x ) .ih y ) ) ) ) |
| 19 | 12 18 | opelopabg | |- ( ( T e. dom adjh /\ ( adjh ` T ) e. _V ) -> ( <. T , ( adjh ` T ) >. e. { <. z , w >. | ( z : ~H --> ~H /\ w : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( z ` y ) ) = ( ( w ` x ) .ih y ) ) } <-> ( T : ~H --> ~H /\ ( adjh ` T ) : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` x ) .ih y ) ) ) ) |
| 20 | 6 19 | mpan2 | |- ( T e. dom adjh -> ( <. T , ( adjh ` T ) >. e. { <. z , w >. | ( z : ~H --> ~H /\ w : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( z ` y ) ) = ( ( w ` x ) .ih y ) ) } <-> ( T : ~H --> ~H /\ ( adjh ` T ) : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` x ) .ih y ) ) ) ) |
| 21 | 5 20 | mpbid | |- ( T e. dom adjh -> ( T : ~H --> ~H /\ ( adjh ` T ) : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` x ) .ih y ) ) ) |
| 22 | 21 | simp3d | |- ( T e. dom adjh -> A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` x ) .ih y ) ) |
| 23 | oveq1 | |- ( x = A -> ( x .ih ( T ` y ) ) = ( A .ih ( T ` y ) ) ) |
|
| 24 | fveq2 | |- ( x = A -> ( ( adjh ` T ) ` x ) = ( ( adjh ` T ) ` A ) ) |
|
| 25 | 24 | oveq1d | |- ( x = A -> ( ( ( adjh ` T ) ` x ) .ih y ) = ( ( ( adjh ` T ) ` A ) .ih y ) ) |
| 26 | 23 25 | eqeq12d | |- ( x = A -> ( ( x .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` x ) .ih y ) <-> ( A .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` A ) .ih y ) ) ) |
| 27 | fveq2 | |- ( y = B -> ( T ` y ) = ( T ` B ) ) |
|
| 28 | 27 | oveq2d | |- ( y = B -> ( A .ih ( T ` y ) ) = ( A .ih ( T ` B ) ) ) |
| 29 | oveq2 | |- ( y = B -> ( ( ( adjh ` T ) ` A ) .ih y ) = ( ( ( adjh ` T ) ` A ) .ih B ) ) |
|
| 30 | 28 29 | eqeq12d | |- ( y = B -> ( ( A .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` A ) .ih y ) <-> ( A .ih ( T ` B ) ) = ( ( ( adjh ` T ) ` A ) .ih B ) ) ) |
| 31 | 26 30 | rspc2v | |- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( ( adjh ` T ) ` x ) .ih y ) -> ( A .ih ( T ` B ) ) = ( ( ( adjh ` T ) ` A ) .ih B ) ) ) |
| 32 | 22 31 | syl5com | |- ( T e. dom adjh -> ( ( A e. ~H /\ B e. ~H ) -> ( A .ih ( T ` B ) ) = ( ( ( adjh ` T ) ` A ) .ih B ) ) ) |
| 33 | 32 | 3impib | |- ( ( T e. dom adjh /\ A e. ~H /\ B e. ~H ) -> ( A .ih ( T ` B ) ) = ( ( ( adjh ` T ) ` A ) .ih B ) ) |