This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an algebraic closure system, if S and T have the same closure and S is independent, then there is a map f from T into the set of finite subsets of S such that S equals the union of ran f . This is proven by taking the map f from acsmapd and observing that, since S and T have the same closure, the closure of U. ran f must contain S . Since S is independent, by mrissmrcd , U. ran f must equal S . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | acsmap2d.1 | |- ( ph -> A e. ( ACS ` X ) ) |
|
| acsmap2d.2 | |- N = ( mrCls ` A ) |
||
| acsmap2d.3 | |- I = ( mrInd ` A ) |
||
| acsmap2d.4 | |- ( ph -> S e. I ) |
||
| acsmap2d.5 | |- ( ph -> T C_ X ) |
||
| acsmap2d.6 | |- ( ph -> ( N ` S ) = ( N ` T ) ) |
||
| Assertion | acsmap2d | |- ( ph -> E. f ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmap2d.1 | |- ( ph -> A e. ( ACS ` X ) ) |
|
| 2 | acsmap2d.2 | |- N = ( mrCls ` A ) |
|
| 3 | acsmap2d.3 | |- I = ( mrInd ` A ) |
|
| 4 | acsmap2d.4 | |- ( ph -> S e. I ) |
|
| 5 | acsmap2d.5 | |- ( ph -> T C_ X ) |
|
| 6 | acsmap2d.6 | |- ( ph -> ( N ` S ) = ( N ` T ) ) |
|
| 7 | 1 | acsmred | |- ( ph -> A e. ( Moore ` X ) ) |
| 8 | 3 7 4 | mrissd | |- ( ph -> S C_ X ) |
| 9 | 7 2 5 | mrcssidd | |- ( ph -> T C_ ( N ` T ) ) |
| 10 | 9 6 | sseqtrrd | |- ( ph -> T C_ ( N ` S ) ) |
| 11 | 1 2 8 10 | acsmapd | |- ( ph -> E. f ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) |
| 12 | simprl | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> f : T --> ( ~P S i^i Fin ) ) |
|
| 13 | 7 | adantr | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> A e. ( Moore ` X ) ) |
| 14 | 4 | adantr | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> S e. I ) |
| 15 | 3 13 14 | mrissd | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> S C_ X ) |
| 16 | 13 2 15 | mrcssidd | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> S C_ ( N ` S ) ) |
| 17 | 6 | adantr | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` S ) = ( N ` T ) ) |
| 18 | simprr | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> T C_ ( N ` U. ran f ) ) |
|
| 19 | 13 2 | mrcssvd | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` U. ran f ) C_ X ) |
| 20 | 13 2 18 19 | mrcssd | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` T ) C_ ( N ` ( N ` U. ran f ) ) ) |
| 21 | frn | |- ( f : T --> ( ~P S i^i Fin ) -> ran f C_ ( ~P S i^i Fin ) ) |
|
| 22 | 21 | unissd | |- ( f : T --> ( ~P S i^i Fin ) -> U. ran f C_ U. ( ~P S i^i Fin ) ) |
| 23 | unifpw | |- U. ( ~P S i^i Fin ) = S |
|
| 24 | 22 23 | sseqtrdi | |- ( f : T --> ( ~P S i^i Fin ) -> U. ran f C_ S ) |
| 25 | 24 | ad2antrl | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> U. ran f C_ S ) |
| 26 | 25 15 | sstrd | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> U. ran f C_ X ) |
| 27 | 13 2 26 | mrcidmd | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` ( N ` U. ran f ) ) = ( N ` U. ran f ) ) |
| 28 | 20 27 | sseqtrd | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` T ) C_ ( N ` U. ran f ) ) |
| 29 | 17 28 | eqsstrd | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` S ) C_ ( N ` U. ran f ) ) |
| 30 | 16 29 | sstrd | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> S C_ ( N ` U. ran f ) ) |
| 31 | 13 2 3 30 25 14 | mrissmrcd | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> S = U. ran f ) |
| 32 | 12 31 | jca | |- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) |
| 33 | 32 | ex | |- ( ph -> ( ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) -> ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) ) |
| 34 | 33 | eximdv | |- ( ph -> ( E. f ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) -> E. f ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) ) |
| 35 | 11 34 | mpd | |- ( ph -> E. f ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) |