This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closure in an algebraic closure system is the union of the closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | acsdrscl.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| Assertion | acsficl | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑆 ) = ∪ ( 𝐹 “ ( 𝒫 𝑆 ∩ Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsdrscl.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 2 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( 𝐹 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑆 ) ) | |
| 3 | pweq | ⊢ ( 𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆 ) | |
| 4 | 3 | ineq1d | ⊢ ( 𝑠 = 𝑆 → ( 𝒫 𝑠 ∩ Fin ) = ( 𝒫 𝑆 ∩ Fin ) ) |
| 5 | 4 | imaeq2d | ⊢ ( 𝑠 = 𝑆 → ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) = ( 𝐹 “ ( 𝒫 𝑆 ∩ Fin ) ) ) |
| 6 | 5 | unieqd | ⊢ ( 𝑠 = 𝑆 → ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) = ∪ ( 𝐹 “ ( 𝒫 𝑆 ∩ Fin ) ) ) |
| 7 | 2 6 | eqeq12d | ⊢ ( 𝑠 = 𝑆 → ( ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ↔ ( 𝐹 ‘ 𝑆 ) = ∪ ( 𝐹 “ ( 𝒫 𝑆 ∩ Fin ) ) ) ) |
| 8 | isacs3lem | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) ) | |
| 9 | 1 | isacs4lem | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( ( toInc ‘ 𝑠 ) ∈ Dirset → ∪ 𝑠 ∈ 𝐶 ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) ) |
| 10 | 1 | isacs5lem | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑡 ∈ 𝒫 𝒫 𝑋 ( ( toInc ‘ 𝑡 ) ∈ Dirset → ( 𝐹 ‘ ∪ 𝑡 ) = ∪ ( 𝐹 “ 𝑡 ) ) ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |
| 11 | 8 9 10 | 3syl | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) ) |
| 12 | 11 | simprd | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐹 ‘ 𝑠 ) = ∪ ( 𝐹 “ ( 𝒫 𝑠 ∩ Fin ) ) ) |
| 14 | elfvdm | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → 𝑋 ∈ dom ACS ) | |
| 15 | elpw2g | ⊢ ( 𝑋 ∈ dom ACS → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝐶 ∈ ( ACS ‘ 𝑋 ) → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
| 17 | 16 | biimpar | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ 𝒫 𝑋 ) |
| 18 | 7 13 17 | rspcdva | ⊢ ( ( 𝐶 ∈ ( ACS ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑆 ) = ∪ ( 𝐹 “ ( 𝒫 𝑆 ∩ Fin ) ) ) |