This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an algebraic closure system, an element is in the closure of a set if and only if it is in the closure of a finite subset. Alternate form of acsficl . Deduction form. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | acsficld.1 | |- ( ph -> A e. ( ACS ` X ) ) |
|
| acsficld.2 | |- N = ( mrCls ` A ) |
||
| acsficld.3 | |- ( ph -> S C_ X ) |
||
| Assertion | acsficl2d | |- ( ph -> ( Y e. ( N ` S ) <-> E. x e. ( ~P S i^i Fin ) Y e. ( N ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsficld.1 | |- ( ph -> A e. ( ACS ` X ) ) |
|
| 2 | acsficld.2 | |- N = ( mrCls ` A ) |
|
| 3 | acsficld.3 | |- ( ph -> S C_ X ) |
|
| 4 | 1 2 3 | acsficld | |- ( ph -> ( N ` S ) = U. ( N " ( ~P S i^i Fin ) ) ) |
| 5 | 4 | eleq2d | |- ( ph -> ( Y e. ( N ` S ) <-> Y e. U. ( N " ( ~P S i^i Fin ) ) ) ) |
| 6 | 1 | acsmred | |- ( ph -> A e. ( Moore ` X ) ) |
| 7 | funmpt | |- Fun ( z e. ~P X |-> |^| { w e. A | z C_ w } ) |
|
| 8 | 2 | mrcfval | |- ( A e. ( Moore ` X ) -> N = ( z e. ~P X |-> |^| { w e. A | z C_ w } ) ) |
| 9 | 8 | funeqd | |- ( A e. ( Moore ` X ) -> ( Fun N <-> Fun ( z e. ~P X |-> |^| { w e. A | z C_ w } ) ) ) |
| 10 | 7 9 | mpbiri | |- ( A e. ( Moore ` X ) -> Fun N ) |
| 11 | eluniima | |- ( Fun N -> ( Y e. U. ( N " ( ~P S i^i Fin ) ) <-> E. x e. ( ~P S i^i Fin ) Y e. ( N ` x ) ) ) |
|
| 12 | 6 10 11 | 3syl | |- ( ph -> ( Y e. U. ( N " ( ~P S i^i Fin ) ) <-> E. x e. ( ~P S i^i Fin ) Y e. ( N ` x ) ) ) |
| 13 | 5 12 | bitrd | |- ( ph -> ( Y e. ( N ` S ) <-> E. x e. ( ~P S i^i Fin ) Y e. ( N ` x ) ) ) |