This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bounds on the arcsine function. (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinrebnd | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resinf1o | ⊢ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) | |
| 2 | f1ocnv | ⊢ ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) → ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - 1 [,] 1 ) –1-1-onto→ ( - ( π / 2 ) [,] ( π / 2 ) ) ) | |
| 3 | f1of | ⊢ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - 1 [,] 1 ) –1-1-onto→ ( - ( π / 2 ) [,] ( π / 2 ) ) → ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - 1 [,] 1 ) ⟶ ( - ( π / 2 ) [,] ( π / 2 ) ) ) | |
| 4 | 1 2 3 | mp2b | ⊢ ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - 1 [,] 1 ) ⟶ ( - ( π / 2 ) [,] ( π / 2 ) ) |
| 5 | 4 | ffvelcdmi | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 6 | 5 | fvresd | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) = ( sin ‘ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) ) |
| 7 | f1ocnvfv2 | ⊢ ( ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) : ( - ( π / 2 ) [,] ( π / 2 ) ) –1-1-onto→ ( - 1 [,] 1 ) ∧ 𝐴 ∈ ( - 1 [,] 1 ) ) → ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) = 𝐴 ) | |
| 8 | 1 7 | mpan | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) = 𝐴 ) |
| 9 | 6 8 | eqtr3d | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( sin ‘ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) = 𝐴 ) |
| 10 | 9 | fveq2d | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ ( sin ‘ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) ) = ( arcsin ‘ 𝐴 ) ) |
| 11 | reasinsin | ⊢ ( ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( arcsin ‘ ( sin ‘ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) ) = ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) | |
| 12 | 5 11 | syl | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ ( sin ‘ ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) ) = ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) |
| 13 | 10 12 | eqtr3d | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) = ( ◡ ( sin ↾ ( - ( π / 2 ) [,] ( π / 2 ) ) ) ‘ 𝐴 ) ) |
| 14 | 13 5 | eqeltrd | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |