This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The n-th iterate of an endofunction is an endofunction. (Contributed by AV, 7-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itcovalendof.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| itcovalendof.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐴 ) | ||
| itcovalendof.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | itcovalendof | ⊢ ( 𝜑 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑁 ) : 𝐴 ⟶ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcovalendof.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | itcovalendof.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐴 ) | |
| 3 | itcovalendof.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 4 | fveq2 | ⊢ ( 𝑥 = 0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( ( IterComp ‘ 𝐹 ) ‘ 0 ) ) | |
| 5 | 4 | feq1d | ⊢ ( 𝑥 = 0 → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) : 𝐴 ⟶ 𝐴 ↔ ( ( IterComp ‘ 𝐹 ) ‘ 0 ) : 𝐴 ⟶ 𝐴 ) ) |
| 6 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) ) | |
| 7 | 6 | feq1d | ⊢ ( 𝑥 = 𝑦 → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) : 𝐴 ⟶ 𝐴 ↔ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 ) ) |
| 8 | fveq2 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) | |
| 9 | 8 | feq1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) : 𝐴 ⟶ 𝐴 ↔ ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) : 𝐴 ⟶ 𝐴 ) ) |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( ( IterComp ‘ 𝐹 ) ‘ 𝑁 ) ) | |
| 11 | 10 | feq1d | ⊢ ( 𝑥 = 𝑁 → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) : 𝐴 ⟶ 𝐴 ↔ ( ( IterComp ‘ 𝐹 ) ‘ 𝑁 ) : 𝐴 ⟶ 𝐴 ) ) |
| 12 | f1oi | ⊢ ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 | |
| 13 | f1of | ⊢ ( ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 → ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐴 ) | |
| 14 | 12 13 | mp1i | ⊢ ( 𝜑 → ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐴 ) |
| 15 | 2 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 16 | 15 | reseq2d | ⊢ ( 𝜑 → ( I ↾ dom 𝐹 ) = ( I ↾ 𝐴 ) ) |
| 17 | 16 | feq1d | ⊢ ( 𝜑 → ( ( I ↾ dom 𝐹 ) : 𝐴 ⟶ 𝐴 ↔ ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐴 ) ) |
| 18 | 14 17 | mpbird | ⊢ ( 𝜑 → ( I ↾ dom 𝐹 ) : 𝐴 ⟶ 𝐴 ) |
| 19 | 2 1 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 20 | itcoval0 | ⊢ ( 𝐹 ∈ V → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( I ↾ dom 𝐹 ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( I ↾ dom 𝐹 ) ) |
| 22 | 21 | feq1d | ⊢ ( 𝜑 → ( ( ( IterComp ‘ 𝐹 ) ‘ 0 ) : 𝐴 ⟶ 𝐴 ↔ ( I ↾ dom 𝐹 ) : 𝐴 ⟶ 𝐴 ) ) |
| 23 | 18 22 | mpbird | ⊢ ( 𝜑 → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) : 𝐴 ⟶ 𝐴 ) |
| 24 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐴 ) |
| 25 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 ) → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 ) | |
| 26 | 24 25 | fcod | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 ) → ( 𝐹 ∘ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) ) : 𝐴 ⟶ 𝐴 ) |
| 27 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 ) → 𝐹 ∈ V ) |
| 28 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 ) → 𝑦 ∈ ℕ0 ) | |
| 29 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 ) → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) ) | |
| 30 | itcovalsucov | ⊢ ( ( 𝐹 ∈ V ∧ 𝑦 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ∘ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) ) ) | |
| 31 | 27 28 29 30 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ∘ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
| 32 | 31 | feq1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 ) → ( ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) : 𝐴 ⟶ 𝐴 ↔ ( 𝐹 ∘ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) ) : 𝐴 ⟶ 𝐴 ) ) |
| 33 | 26 32 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) : 𝐴 ⟶ 𝐴 ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) : 𝐴 ⟶ 𝐴 ) |
| 34 | 5 7 9 11 23 33 | nn0indd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( ( IterComp ‘ 𝐹 ) ‘ 𝑁 ) : 𝐴 ⟶ 𝐴 ) |
| 35 | 3 34 | mpdan | ⊢ ( 𝜑 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑁 ) : 𝐴 ⟶ 𝐴 ) |