This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at (0,0), (0,1), (0,2). (Contributed by AV, 2-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackval0012 | ⊢ 〈 ( ( Ack ‘ 0 ) ‘ 0 ) , ( ( Ack ‘ 0 ) ‘ 1 ) , ( ( Ack ‘ 0 ) ‘ 2 ) 〉 = 〈 1 , 2 , 3 〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackval0 | ⊢ ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) | |
| 2 | oveq1 | ⊢ ( 𝑛 = 0 → ( 𝑛 + 1 ) = ( 0 + 1 ) ) | |
| 3 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 4 | 2 3 | eqtrdi | ⊢ ( 𝑛 = 0 → ( 𝑛 + 1 ) = 1 ) |
| 5 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 6 | 5 | a1i | ⊢ ( ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) → 0 ∈ ℕ0 ) |
| 7 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 8 | 7 | a1i | ⊢ ( ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) → 1 ∈ ℕ0 ) |
| 9 | 1 4 6 8 | fvmptd3 | ⊢ ( ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) → ( ( Ack ‘ 0 ) ‘ 0 ) = 1 ) |
| 10 | oveq1 | ⊢ ( 𝑛 = 1 → ( 𝑛 + 1 ) = ( 1 + 1 ) ) | |
| 11 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 12 | 10 11 | eqtrdi | ⊢ ( 𝑛 = 1 → ( 𝑛 + 1 ) = 2 ) |
| 13 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 14 | 13 | a1i | ⊢ ( ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) → 2 ∈ ℕ0 ) |
| 15 | 1 12 8 14 | fvmptd3 | ⊢ ( ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) → ( ( Ack ‘ 0 ) ‘ 1 ) = 2 ) |
| 16 | oveq1 | ⊢ ( 𝑛 = 2 → ( 𝑛 + 1 ) = ( 2 + 1 ) ) | |
| 17 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 18 | 16 17 | eqtrdi | ⊢ ( 𝑛 = 2 → ( 𝑛 + 1 ) = 3 ) |
| 19 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 20 | 19 | a1i | ⊢ ( ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) → 3 ∈ ℕ0 ) |
| 21 | 1 18 14 20 | fvmptd3 | ⊢ ( ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) → ( ( Ack ‘ 0 ) ‘ 2 ) = 3 ) |
| 22 | 9 15 21 | oteq123d | ⊢ ( ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) → 〈 ( ( Ack ‘ 0 ) ‘ 0 ) , ( ( Ack ‘ 0 ) ‘ 1 ) , ( ( Ack ‘ 0 ) ‘ 2 ) 〉 = 〈 1 , 2 , 3 〉 ) |
| 23 | 1 22 | ax-mp | ⊢ 〈 ( ( Ack ‘ 0 ) ‘ 0 ) , ( ( Ack ‘ 0 ) ‘ 1 ) , ( ( Ack ‘ 0 ) ‘ 2 ) 〉 = 〈 1 , 2 , 3 〉 |