This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at a successor of the first argument and an arbitrary second argument. (Contributed by Thierry Arnoux, 28-Apr-2024) (Revised by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackvalsuc1 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( Ack ‘ ( 𝑀 + 1 ) ) ‘ 𝑁 ) = ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ‘ 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackvalsuc1mpt | ⊢ ( 𝑀 ∈ ℕ0 → ( Ack ‘ ( 𝑀 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( Ack ‘ ( 𝑀 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) |
| 3 | fvoveq1 | ⊢ ( 𝑛 = 𝑁 → ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ) | |
| 4 | 3 | fveq1d | ⊢ ( 𝑛 = 𝑁 → ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) = ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ‘ 1 ) ) |
| 5 | 4 | adantl | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 = 𝑁 ) → ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) = ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ‘ 1 ) ) |
| 6 | simpr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 7 | fvexd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ‘ 1 ) ∈ V ) | |
| 8 | 2 5 6 7 | fvmptd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( Ack ‘ ( 𝑀 + 1 ) ) ‘ 𝑁 ) = ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑁 + 1 ) ) ‘ 1 ) ) |