This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the function that returns the n-th iterate of the "times 2 plus a constant" function with regard to composition. (Contributed by AV, 7-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itcovalt2.f | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 · 𝑛 ) + 𝐶 ) ) | |
| Assertion | itcovalt2 | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( IterComp ‘ 𝐹 ) ‘ 𝐼 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝐼 ) ) − 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcovalt2.f | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 · 𝑛 ) + 𝐶 ) ) | |
| 2 | fveq2 | ⊢ ( 𝑥 = 0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( ( IterComp ‘ 𝐹 ) ‘ 0 ) ) | |
| 3 | oveq2 | ⊢ ( 𝑥 = 0 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 0 ) ) | |
| 4 | 3 | oveq2d | ⊢ ( 𝑥 = 0 → ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) = ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 0 ) ) ) |
| 5 | 4 | oveq1d | ⊢ ( 𝑥 = 0 → ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) = ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 0 ) ) − 𝐶 ) ) |
| 6 | 5 | mpteq2dv | ⊢ ( 𝑥 = 0 → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 0 ) ) − 𝐶 ) ) ) |
| 7 | 2 6 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) ↔ ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 0 ) ) − 𝐶 ) ) ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) ) ↔ ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 0 ) ) − 𝐶 ) ) ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) ) | |
| 10 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 𝑦 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) = ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) ) |
| 12 | 11 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) = ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) |
| 13 | 12 | mpteq2dv | ⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) |
| 14 | 9 13 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) ↔ ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) ) ↔ ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) ) ) |
| 16 | fveq2 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) | |
| 17 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 2 ↑ 𝑥 ) = ( 2 ↑ ( 𝑦 + 1 ) ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) = ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) ) |
| 19 | 18 | oveq1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) = ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) |
| 20 | 19 | mpteq2dv | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) |
| 21 | 16 20 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) ↔ ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) ) |
| 22 | 21 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) ) ↔ ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) ) ) |
| 23 | fveq2 | ⊢ ( 𝑥 = 𝐼 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( ( IterComp ‘ 𝐹 ) ‘ 𝐼 ) ) | |
| 24 | oveq2 | ⊢ ( 𝑥 = 𝐼 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 𝐼 ) ) | |
| 25 | 24 | oveq2d | ⊢ ( 𝑥 = 𝐼 → ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) = ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝐼 ) ) ) |
| 26 | 25 | oveq1d | ⊢ ( 𝑥 = 𝐼 → ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) = ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝐼 ) ) − 𝐶 ) ) |
| 27 | 26 | mpteq2dv | ⊢ ( 𝑥 = 𝐼 → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝐼 ) ) − 𝐶 ) ) ) |
| 28 | 23 27 | eqeq12d | ⊢ ( 𝑥 = 𝐼 → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) ↔ ( ( IterComp ‘ 𝐹 ) ‘ 𝐼 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝐼 ) ) − 𝐶 ) ) ) ) |
| 29 | 28 | imbi2d | ⊢ ( 𝑥 = 𝐼 → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑥 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑥 ) ) − 𝐶 ) ) ) ↔ ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝐼 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝐼 ) ) − 𝐶 ) ) ) ) ) |
| 30 | 1 | itcovalt2lem1 | ⊢ ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 0 ) ) − 𝐶 ) ) ) |
| 31 | pm2.27 | ⊢ ( 𝐶 ∈ ℕ0 → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) ) | |
| 32 | 31 | adantl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) ) |
| 33 | 1 | itcovalt2lem2 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) ) |
| 34 | 32 33 | syld | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) ) |
| 35 | 34 | ex | ⊢ ( 𝑦 ∈ ℕ0 → ( 𝐶 ∈ ℕ0 → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) ) ) |
| 36 | 35 | com23 | ⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝑦 ) ) − 𝐶 ) ) ) → ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ ( 𝑦 + 1 ) ) ) − 𝐶 ) ) ) ) ) |
| 37 | 8 15 22 29 30 36 | nn0ind | ⊢ ( 𝐼 ∈ ℕ0 → ( 𝐶 ∈ ℕ0 → ( ( IterComp ‘ 𝐹 ) ‘ 𝐼 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝐼 ) ) − 𝐶 ) ) ) ) |
| 38 | 37 | imp | ⊢ ( ( 𝐼 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( IterComp ‘ 𝐹 ) ‘ 𝐼 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑛 + 𝐶 ) · ( 2 ↑ 𝐼 ) ) − 𝐶 ) ) ) |