This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at a successor of the first argument as a mapping of the second argument. (Contributed by Thierry Arnoux, 28-Apr-2024) (Revised by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackvalsuc1mpt | ⊢ ( 𝑀 ∈ ℕ0 → ( Ack ‘ ( 𝑀 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ack | ⊢ Ack = seq 0 ( ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ) | |
| 2 | 1 | fveq1i | ⊢ ( Ack ‘ ( 𝑀 + 1 ) ) = ( seq 0 ( ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ) ‘ ( 𝑀 + 1 ) ) |
| 3 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 4 | id | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℕ0 ) | |
| 5 | eqid | ⊢ ( 𝑀 + 1 ) = ( 𝑀 + 1 ) | |
| 6 | 1 | eqcomi | ⊢ seq 0 ( ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ) = Ack |
| 7 | 6 | fveq1i | ⊢ ( seq 0 ( ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ) ‘ 𝑀 ) = ( Ack ‘ 𝑀 ) |
| 8 | 7 | a1i | ⊢ ( 𝑀 ∈ ℕ0 → ( seq 0 ( ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ) ‘ 𝑀 ) = ( Ack ‘ 𝑀 ) ) |
| 9 | eqidd | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ) | |
| 10 | nn0p1gt0 | ⊢ ( 𝑀 ∈ ℕ0 → 0 < ( 𝑀 + 1 ) ) | |
| 11 | 10 | gt0ne0d | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ≠ 0 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑖 = ( 𝑀 + 1 ) ) → ( 𝑀 + 1 ) ≠ 0 ) |
| 13 | neeq1 | ⊢ ( 𝑖 = ( 𝑀 + 1 ) → ( 𝑖 ≠ 0 ↔ ( 𝑀 + 1 ) ≠ 0 ) ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑖 = ( 𝑀 + 1 ) ) → ( 𝑖 ≠ 0 ↔ ( 𝑀 + 1 ) ≠ 0 ) ) |
| 15 | 12 14 | mpbird | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑖 = ( 𝑀 + 1 ) ) → 𝑖 ≠ 0 ) |
| 16 | 15 | neneqd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑖 = ( 𝑀 + 1 ) ) → ¬ 𝑖 = 0 ) |
| 17 | 16 | iffalsed | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑖 = ( 𝑀 + 1 ) ) → if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) = 𝑖 ) |
| 18 | simpr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑖 = ( 𝑀 + 1 ) ) → 𝑖 = ( 𝑀 + 1 ) ) | |
| 19 | 17 18 | eqtrd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑖 = ( 𝑀 + 1 ) ) → if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) = ( 𝑀 + 1 ) ) |
| 20 | peano2nn0 | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ0 ) | |
| 21 | 9 19 20 20 | fvmptd | ⊢ ( 𝑀 ∈ ℕ0 → ( ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) |
| 22 | 3 4 5 8 21 | seqp1d | ⊢ ( 𝑀 ∈ ℕ0 → ( seq 0 ( ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ) ‘ ( 𝑀 + 1 ) ) = ( ( Ack ‘ 𝑀 ) ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) ( 𝑀 + 1 ) ) ) |
| 23 | eqidd | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) = ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) ) | |
| 24 | fveq2 | ⊢ ( 𝑓 = ( Ack ‘ 𝑀 ) → ( IterComp ‘ 𝑓 ) = ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ) | |
| 25 | 24 | fveq1d | ⊢ ( 𝑓 = ( Ack ‘ 𝑀 ) → ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) = ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ) |
| 26 | 25 | fveq1d | ⊢ ( 𝑓 = ( Ack ‘ 𝑀 ) → ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) = ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) |
| 27 | 26 | mpteq2dv | ⊢ ( 𝑓 = ( Ack ‘ 𝑀 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) |
| 28 | 27 | ad2antrl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ ( 𝑓 = ( Ack ‘ 𝑀 ) ∧ 𝑗 = ( 𝑀 + 1 ) ) ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) |
| 29 | fvexd | ⊢ ( 𝑀 ∈ ℕ0 → ( Ack ‘ 𝑀 ) ∈ V ) | |
| 30 | ovexd | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ V ) | |
| 31 | nn0ex | ⊢ ℕ0 ∈ V | |
| 32 | 31 | mptex | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ∈ V |
| 33 | 32 | a1i | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ∈ V ) |
| 34 | 23 28 29 30 33 | ovmpod | ⊢ ( 𝑀 ∈ ℕ0 → ( ( Ack ‘ 𝑀 ) ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) ( 𝑀 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) |
| 35 | 22 34 | eqtrd | ⊢ ( 𝑀 ∈ ℕ0 → ( seq 0 ( ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ) ‘ ( 𝑀 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) |
| 36 | 2 35 | eqtrid | ⊢ ( 𝑀 ∈ ℕ0 → ( Ack ‘ ( 𝑀 + 1 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ ( Ack ‘ 𝑀 ) ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) |