This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent of Axiom of Choice. Contrapositive of ac6s . (Contributed by NM, 10-Jun-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ac6s.1 | ⊢ 𝐴 ∈ V | |
| ac6s.2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ac6n | ⊢ ( ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6s.1 | ⊢ 𝐴 ∈ V | |
| 2 | ac6s.2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2 | notbid | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| 4 | 1 3 | ac6s | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ¬ 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ) ) |
| 5 | 4 | con3i | ⊢ ( ¬ ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ) → ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ¬ 𝜑 ) |
| 6 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ) | |
| 7 | 6 | imbi2i | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ↔ ( 𝑓 : 𝐴 ⟶ 𝐵 → ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ) ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ↔ ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 → ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ) ) |
| 9 | alinexa | ⊢ ( ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 → ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ) ↔ ¬ ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ) ) | |
| 10 | 8 9 | bitri | ⊢ ( ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ↔ ¬ ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ) ) |
| 11 | dfral2 | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃ 𝑦 ∈ 𝐵 ¬ 𝜑 ) | |
| 12 | 11 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ∈ 𝐵 ¬ 𝜑 ) |
| 13 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ ∃ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ¬ 𝜑 ) | |
| 14 | 12 13 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ¬ 𝜑 ) |
| 15 | 5 10 14 | 3imtr4i | ⊢ ( ∀ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ) |