This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalization of the Axiom of Choice to classes. Slightly strengthened version of ac6s3 . (Contributed by NM, 29-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ac6s.1 | ⊢ 𝐴 ∈ V | |
| ac6s.2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ac6s2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6s.1 | ⊢ 𝐴 ∈ V | |
| 2 | ac6s.2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | rexv | ⊢ ( ∃ 𝑦 ∈ V 𝜑 ↔ ∃ 𝑦 𝜑 ) | |
| 4 | 3 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ V 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 ) |
| 5 | 1 2 | ac6s | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ V 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ V ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 6 | ffn | ⊢ ( 𝑓 : 𝐴 ⟶ V → 𝑓 Fn 𝐴 ) | |
| 7 | 6 | anim1i | ⊢ ( ( 𝑓 : 𝐴 ⟶ V ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) → ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 8 | 7 | eximi | ⊢ ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ V ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 9 | 5 8 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ V 𝜑 → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 10 | 4 9 | sylbir | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝜑 → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |