This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent of Axiom of Choice. B is a collection B ( x ) of nonempty sets. (Contributed by Mario Carneiro, 22-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ac6c4.1 | ⊢ 𝐴 ∈ V | |
| ac6c4.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | ac6c4 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6c4.1 | ⊢ 𝐴 ∈ V | |
| 2 | ac6c4.2 | ⊢ 𝐵 ∈ V | |
| 3 | nfv | ⊢ Ⅎ 𝑧 𝐵 ≠ ∅ | |
| 4 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 ∅ | |
| 6 | 4 5 | nfne | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ≠ ∅ |
| 7 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) | |
| 8 | 7 | neeq1d | ⊢ ( 𝑥 = 𝑧 → ( 𝐵 ≠ ∅ ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ≠ ∅ ) ) |
| 9 | 3 6 8 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∀ 𝑧 ∈ 𝐴 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ≠ ∅ ) |
| 10 | n0 | ⊢ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) | |
| 11 | nfv | ⊢ Ⅎ 𝑦 𝑧 ∈ 𝐴 | |
| 12 | nfre1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 | |
| 13 | 4 | nfel2 | ⊢ Ⅎ 𝑥 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
| 14 | 7 | eleq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 15 | 13 14 | rspce | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| 16 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
| 17 | 15 16 | sylibr | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 18 | rspe | ⊢ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) → ∃ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) | |
| 19 | 17 18 | sylancom | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) → ∃ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 20 | 19 | ex | ⊢ ( 𝑧 ∈ 𝐴 → ( 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 → ∃ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 21 | 11 12 20 | exlimd | ⊢ ( 𝑧 ∈ 𝐴 → ( ∃ 𝑦 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 → ∃ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 22 | 10 21 | biimtrid | ⊢ ( 𝑧 ∈ 𝐴 → ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ≠ ∅ → ∃ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 23 | 22 | ralimia | ⊢ ( ∀ 𝑧 ∈ 𝐴 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ≠ ∅ → ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 24 | 9 23 | sylbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 25 | 1 2 | iunex | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V |
| 26 | eleq1 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → ( 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ↔ ( 𝑓 ‘ 𝑧 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) | |
| 27 | 1 25 26 | ac6 | ⊢ ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑓 ‘ 𝑧 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 28 | ffn | ⊢ ( 𝑓 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑓 Fn 𝐴 ) | |
| 29 | nfv | ⊢ Ⅎ 𝑧 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 | |
| 30 | 4 | nfel2 | ⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑧 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
| 31 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑧 ) ) | |
| 32 | 31 7 | eleq12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑓 ‘ 𝑧 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 33 | 29 30 32 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑓 ‘ 𝑧 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 34 | 33 | biimpri | ⊢ ( ∀ 𝑧 ∈ 𝐴 ( 𝑓 ‘ 𝑧 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |
| 35 | 28 34 | anim12i | ⊢ ( ( 𝑓 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑓 ‘ 𝑧 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) → ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 36 | 35 | eximi | ⊢ ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑓 ‘ 𝑧 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 37 | 24 27 36 | 3syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |