This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
Introduce the Axiom of Choice
ac6
Metamath Proof Explorer
Theorem ac6
Description: Equivalent of Axiom of Choice. This is useful for proving that there
exists, for example, a sequence mapping natural numbers to members of a
larger set B , where ph depends on x (the natural number)
and y (to specify a member of B ). A stronger version of this
theorem, ac6s , allows B to be a proper class. (Contributed by NM , 18-Oct-1999) (Revised by Mario Carneiro , 27-Aug-2015)
Ref
Expression
Hypotheses
ac6.1
⊢ A ∈ V
ac6.2
⊢ B ∈ V
ac6.3
⊢ y = f ⁡ x → φ ↔ ψ
Assertion
ac6
⊢ ∀ x ∈ A ∃ y ∈ B φ → ∃ f f : A ⟶ B ∧ ∀ x ∈ A ψ
Proof
Step
Hyp
Ref
Expression
1
ac6.1
⊢ A ∈ V
2
ac6.2
⊢ B ∈ V
3
ac6.3
⊢ y = f ⁡ x → φ ↔ ψ
4
ssrab2
⊢ y ∈ B | φ ⊆ B
5
4
rgenw
⊢ ∀ x ∈ A y ∈ B | φ ⊆ B
6
iunss
⊢ ⋃ x ∈ A y ∈ B | φ ⊆ B ↔ ∀ x ∈ A y ∈ B | φ ⊆ B
7
5 6
mpbir
⊢ ⋃ x ∈ A y ∈ B | φ ⊆ B
8
2 7
ssexi
⊢ ⋃ x ∈ A y ∈ B | φ ∈ V
9
numth3
⊢ ⋃ x ∈ A y ∈ B | φ ∈ V → ⋃ x ∈ A y ∈ B | φ ∈ dom ⁡ card
10
8 9
ax-mp
⊢ ⋃ x ∈ A y ∈ B | φ ∈ dom ⁡ card
11
3
ac6num
⊢ A ∈ V ∧ ⋃ x ∈ A y ∈ B | φ ∈ dom ⁡ card ∧ ∀ x ∈ A ∃ y ∈ B φ → ∃ f f : A ⟶ B ∧ ∀ x ∈ A ψ
12
1 10 11
mp3an12
⊢ ∀ x ∈ A ∃ y ∈ B φ → ∃ f f : A ⟶ B ∧ ∀ x ∈ A ψ