This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An Axiom of Choice equivalent: there exists a function f (called a choice function) with domain A that maps each nonempty member of the domain to an element of that member. Axiom AC of BellMachover p. 488. Note that the assertion that f be a function is not necessary; see ac4 . (Contributed by NM, 29-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ac5.1 | ⊢ 𝐴 ∈ V | |
| Assertion | ac5 | ⊢ ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac5.1 | ⊢ 𝐴 ∈ V | |
| 2 | fneq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑓 Fn 𝑦 ↔ 𝑓 Fn 𝐴 ) ) | |
| 3 | raleq | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) | |
| 4 | 2 3 | anbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 5 | 4 | exbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) ) |
| 6 | dfac4 | ⊢ ( CHOICE ↔ ∀ 𝑦 ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) | |
| 7 | 6 | axaci | ⊢ ∃ 𝑓 ( 𝑓 Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 8 | 1 5 7 | vtocl | ⊢ ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) |