This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An Axiom of Choice equivalent: there exists a function f (called a choice function) with domain A that maps each nonempty member of the domain to an element of that member. Axiom AC of BellMachover p. 488. Note that the assertion that f be a function is not necessary; see ac4 . (Contributed by NM, 29-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ac5.1 | |- A e. _V |
|
| Assertion | ac5 | |- E. f ( f Fn A /\ A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac5.1 | |- A e. _V |
|
| 2 | fneq2 | |- ( y = A -> ( f Fn y <-> f Fn A ) ) |
|
| 3 | raleq | |- ( y = A -> ( A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) <-> A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) ) |
|
| 4 | 2 3 | anbi12d | |- ( y = A -> ( ( f Fn y /\ A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) ) <-> ( f Fn A /\ A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) ) ) |
| 5 | 4 | exbidv | |- ( y = A -> ( E. f ( f Fn y /\ A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) ) <-> E. f ( f Fn A /\ A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) ) ) |
| 6 | dfac4 | |- ( CHOICE <-> A. y E. f ( f Fn y /\ A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) ) ) |
|
| 7 | 6 | axaci | |- E. f ( f Fn y /\ A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) ) |
| 8 | 1 5 7 | vtocl | |- E. f ( f Fn A /\ A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) |