This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem axaci

Description: Apply a choice equivalent. (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis axaci.1 ( CHOICE ↔ ∀ 𝑥 𝜑 )
Assertion axaci 𝜑

Proof

Step Hyp Ref Expression
1 axaci.1 ( CHOICE ↔ ∀ 𝑥 𝜑 )
2 axac3 CHOICE
3 2 1 mpbi 𝑥 𝜑
4 3 spi 𝜑