This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An absolute value satisfies the triangle inequality. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abv0.a | |- A = ( AbsVal ` R ) |
|
| abvneg.b | |- B = ( Base ` R ) |
||
| abvsubtri.p | |- .- = ( -g ` R ) |
||
| Assertion | abvsubtri | |- ( ( F e. A /\ X e. B /\ Y e. B ) -> ( F ` ( X .- Y ) ) <_ ( ( F ` X ) + ( F ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a | |- A = ( AbsVal ` R ) |
|
| 2 | abvneg.b | |- B = ( Base ` R ) |
|
| 3 | abvsubtri.p | |- .- = ( -g ` R ) |
|
| 4 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 5 | eqid | |- ( invg ` R ) = ( invg ` R ) |
|
| 6 | 2 4 5 3 | grpsubval | |- ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X ( +g ` R ) ( ( invg ` R ) ` Y ) ) ) |
| 7 | 6 | 3adant1 | |- ( ( F e. A /\ X e. B /\ Y e. B ) -> ( X .- Y ) = ( X ( +g ` R ) ( ( invg ` R ) ` Y ) ) ) |
| 8 | 7 | fveq2d | |- ( ( F e. A /\ X e. B /\ Y e. B ) -> ( F ` ( X .- Y ) ) = ( F ` ( X ( +g ` R ) ( ( invg ` R ) ` Y ) ) ) ) |
| 9 | 1 | abvrcl | |- ( F e. A -> R e. Ring ) |
| 10 | 9 | 3ad2ant1 | |- ( ( F e. A /\ X e. B /\ Y e. B ) -> R e. Ring ) |
| 11 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 12 | 10 11 | syl | |- ( ( F e. A /\ X e. B /\ Y e. B ) -> R e. Grp ) |
| 13 | simp3 | |- ( ( F e. A /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 14 | 2 5 | grpinvcl | |- ( ( R e. Grp /\ Y e. B ) -> ( ( invg ` R ) ` Y ) e. B ) |
| 15 | 12 13 14 | syl2anc | |- ( ( F e. A /\ X e. B /\ Y e. B ) -> ( ( invg ` R ) ` Y ) e. B ) |
| 16 | 1 2 4 | abvtri | |- ( ( F e. A /\ X e. B /\ ( ( invg ` R ) ` Y ) e. B ) -> ( F ` ( X ( +g ` R ) ( ( invg ` R ) ` Y ) ) ) <_ ( ( F ` X ) + ( F ` ( ( invg ` R ) ` Y ) ) ) ) |
| 17 | 15 16 | syld3an3 | |- ( ( F e. A /\ X e. B /\ Y e. B ) -> ( F ` ( X ( +g ` R ) ( ( invg ` R ) ` Y ) ) ) <_ ( ( F ` X ) + ( F ` ( ( invg ` R ) ` Y ) ) ) ) |
| 18 | 1 2 5 | abvneg | |- ( ( F e. A /\ Y e. B ) -> ( F ` ( ( invg ` R ) ` Y ) ) = ( F ` Y ) ) |
| 19 | 18 | 3adant2 | |- ( ( F e. A /\ X e. B /\ Y e. B ) -> ( F ` ( ( invg ` R ) ` Y ) ) = ( F ` Y ) ) |
| 20 | 19 | oveq2d | |- ( ( F e. A /\ X e. B /\ Y e. B ) -> ( ( F ` X ) + ( F ` ( ( invg ` R ) ` Y ) ) ) = ( ( F ` X ) + ( F ` Y ) ) ) |
| 21 | 17 20 | breqtrd | |- ( ( F e. A /\ X e. B /\ Y e. B ) -> ( F ` ( X ( +g ` R ) ( ( invg ` R ) ` Y ) ) ) <_ ( ( F ` X ) + ( F ` Y ) ) ) |
| 22 | 8 21 | eqbrtrd | |- ( ( F e. A /\ X e. B /\ Y e. B ) -> ( F ` ( X .- Y ) ) <_ ( ( F ` X ) + ( F ` Y ) ) ) |