This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference between a real number and its nearest integer is less than or equal to one half. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 14-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rddif | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ≤ ( 1 / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfcn | ⊢ ( 1 / 2 ) ∈ ℂ | |
| 2 | 1 | 2timesi | ⊢ ( 2 · ( 1 / 2 ) ) = ( ( 1 / 2 ) + ( 1 / 2 ) ) |
| 3 | 2cn | ⊢ 2 ∈ ℂ | |
| 4 | 2ne0 | ⊢ 2 ≠ 0 | |
| 5 | 3 4 | recidi | ⊢ ( 2 · ( 1 / 2 ) ) = 1 |
| 6 | 2 5 | eqtr3i | ⊢ ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
| 7 | 6 | oveq2i | ⊢ ( ( 𝐴 − ( 1 / 2 ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( 𝐴 − ( 1 / 2 ) ) + 1 ) |
| 8 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 9 | 1 | a1i | ⊢ ( 𝐴 ∈ ℝ → ( 1 / 2 ) ∈ ℂ ) |
| 10 | 8 9 9 | nppcan3d | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 − ( 1 / 2 ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( 𝐴 + ( 1 / 2 ) ) ) |
| 11 | 7 10 | eqtr3id | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 − ( 1 / 2 ) ) + 1 ) = ( 𝐴 + ( 1 / 2 ) ) ) |
| 12 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 13 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ ) | |
| 14 | 12 13 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ ) |
| 15 | fllep1 | ⊢ ( ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ → ( 𝐴 + ( 1 / 2 ) ) ≤ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + ( 1 / 2 ) ) ≤ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ) |
| 17 | 11 16 | eqbrtrd | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 − ( 1 / 2 ) ) + 1 ) ≤ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ) |
| 18 | resubcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( 𝐴 − ( 1 / 2 ) ) ∈ ℝ ) | |
| 19 | 12 18 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − ( 1 / 2 ) ) ∈ ℝ ) |
| 20 | reflcl | ⊢ ( ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) | |
| 21 | 14 20 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) |
| 22 | 1red | ⊢ ( 𝐴 ∈ ℝ → 1 ∈ ℝ ) | |
| 23 | 19 21 22 | leadd1d | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 − ( 1 / 2 ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ↔ ( ( 𝐴 − ( 1 / 2 ) ) + 1 ) ≤ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ) ) |
| 24 | 17 23 | mpbird | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − ( 1 / 2 ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) |
| 25 | flle | ⊢ ( ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ≤ ( 𝐴 + ( 1 / 2 ) ) ) | |
| 26 | 14 25 | syl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ≤ ( 𝐴 + ( 1 / 2 ) ) ) |
| 27 | id | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) | |
| 28 | 12 | a1i | ⊢ ( 𝐴 ∈ ℝ → ( 1 / 2 ) ∈ ℝ ) |
| 29 | absdifle | ⊢ ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ≤ ( 1 / 2 ) ↔ ( ( 𝐴 − ( 1 / 2 ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ≤ ( 𝐴 + ( 1 / 2 ) ) ) ) ) | |
| 30 | 21 27 28 29 | syl3anc | ⊢ ( 𝐴 ∈ ℝ → ( ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ≤ ( 1 / 2 ) ↔ ( ( 𝐴 − ( 1 / 2 ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ≤ ( 𝐴 + ( 1 / 2 ) ) ) ) ) |
| 31 | 24 26 30 | mpbir2and | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ≤ ( 1 / 2 ) ) |