This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of integer exponentiation. (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absexpz | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0nn | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) | |
| 2 | absexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) | |
| 3 | 2 | ex | ⊢ ( 𝐴 ∈ ℂ → ( 𝑁 ∈ ℕ0 → ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝑁 ∈ ℕ0 → ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) ) |
| 5 | 1cnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 1 ∈ ℂ ) | |
| 6 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐴 ∈ ℂ ) | |
| 7 | nnnn0 | ⊢ ( - 𝑁 ∈ ℕ → - 𝑁 ∈ ℕ0 ) | |
| 8 | 7 | ad2antll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℕ0 ) |
| 9 | 6 8 | expcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ - 𝑁 ) ∈ ℂ ) |
| 10 | simplr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐴 ≠ 0 ) | |
| 11 | nnz | ⊢ ( - 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ ) | |
| 12 | 11 | ad2antll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℤ ) |
| 13 | 6 10 12 | expne0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ - 𝑁 ) ≠ 0 ) |
| 14 | absdiv | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ - 𝑁 ) ∈ ℂ ∧ ( 𝐴 ↑ - 𝑁 ) ≠ 0 ) → ( abs ‘ ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) = ( ( abs ‘ 1 ) / ( abs ‘ ( 𝐴 ↑ - 𝑁 ) ) ) ) | |
| 15 | 5 9 13 14 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( abs ‘ ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) = ( ( abs ‘ 1 ) / ( abs ‘ ( 𝐴 ↑ - 𝑁 ) ) ) ) |
| 16 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 17 | 16 | oveq1i | ⊢ ( ( abs ‘ 1 ) / ( abs ‘ ( 𝐴 ↑ - 𝑁 ) ) ) = ( 1 / ( abs ‘ ( 𝐴 ↑ - 𝑁 ) ) ) |
| 18 | absexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ - 𝑁 ) ) = ( ( abs ‘ 𝐴 ) ↑ - 𝑁 ) ) | |
| 19 | 6 8 18 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( abs ‘ ( 𝐴 ↑ - 𝑁 ) ) = ( ( abs ‘ 𝐴 ) ↑ - 𝑁 ) ) |
| 20 | 19 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 1 / ( abs ‘ ( 𝐴 ↑ - 𝑁 ) ) ) = ( 1 / ( ( abs ‘ 𝐴 ) ↑ - 𝑁 ) ) ) |
| 21 | 17 20 | eqtrid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( ( abs ‘ 1 ) / ( abs ‘ ( 𝐴 ↑ - 𝑁 ) ) ) = ( 1 / ( ( abs ‘ 𝐴 ) ↑ - 𝑁 ) ) ) |
| 22 | 15 21 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( abs ‘ ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) = ( 1 / ( ( abs ‘ 𝐴 ) ↑ - 𝑁 ) ) ) |
| 23 | simprl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℝ ) | |
| 24 | 23 | recnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℂ ) |
| 25 | expneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) | |
| 26 | 6 24 8 25 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐴 ↑ 𝑁 ) = ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) |
| 27 | 26 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) = ( abs ‘ ( 1 / ( 𝐴 ↑ - 𝑁 ) ) ) ) |
| 28 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 30 | 29 | recnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 31 | expneg2 | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ - 𝑁 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) = ( 1 / ( ( abs ‘ 𝐴 ) ↑ - 𝑁 ) ) ) | |
| 32 | 30 24 8 31 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) = ( 1 / ( ( abs ‘ 𝐴 ) ↑ - 𝑁 ) ) ) |
| 33 | 22 27 32 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) |
| 34 | 33 | ex | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) → ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) ) |
| 35 | 4 34 | jaod | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) ) |
| 36 | 35 | 3impia | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) → ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) |
| 37 | 1 36 | syl3an3b | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) |