This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a difference and 'less than or equal to' relation. (Contributed by Paul Chapman, 18-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absdifle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ 𝐶 ↔ ( ( 𝐵 − 𝐶 ) ≤ 𝐴 ∧ 𝐴 ≤ ( 𝐵 + 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 − 𝐵 ) ∈ ℝ ) | |
| 2 | absle | ⊢ ( ( ( 𝐴 − 𝐵 ) ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ 𝐶 ↔ ( - 𝐶 ≤ ( 𝐴 − 𝐵 ) ∧ ( 𝐴 − 𝐵 ) ≤ 𝐶 ) ) ) | |
| 3 | 1 2 | stoic3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ 𝐶 ↔ ( - 𝐶 ≤ ( 𝐴 − 𝐵 ) ∧ ( 𝐴 − 𝐵 ) ≤ 𝐶 ) ) ) |
| 4 | renegcl | ⊢ ( 𝐶 ∈ ℝ → - 𝐶 ∈ ℝ ) | |
| 5 | leaddsub2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ - 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 + - 𝐶 ) ≤ 𝐴 ↔ - 𝐶 ≤ ( 𝐴 − 𝐵 ) ) ) | |
| 6 | 4 5 | syl3an2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 + - 𝐶 ) ≤ 𝐴 ↔ - 𝐶 ≤ ( 𝐴 − 𝐵 ) ) ) |
| 7 | 6 | 3comr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐵 + - 𝐶 ) ≤ 𝐴 ↔ - 𝐶 ≤ ( 𝐴 − 𝐵 ) ) ) |
| 8 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 9 | recn | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) | |
| 10 | negsub | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + - 𝐶 ) = ( 𝐵 − 𝐶 ) ) | |
| 11 | 8 9 10 | syl2an | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 + - 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
| 12 | 11 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 + - 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
| 13 | 12 | breq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐵 + - 𝐶 ) ≤ 𝐴 ↔ ( 𝐵 − 𝐶 ) ≤ 𝐴 ) ) |
| 14 | 7 13 | bitr3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( - 𝐶 ≤ ( 𝐴 − 𝐵 ) ↔ ( 𝐵 − 𝐶 ) ≤ 𝐴 ) ) |
| 15 | lesubadd2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 𝐶 ↔ 𝐴 ≤ ( 𝐵 + 𝐶 ) ) ) | |
| 16 | 14 15 | anbi12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( - 𝐶 ≤ ( 𝐴 − 𝐵 ) ∧ ( 𝐴 − 𝐵 ) ≤ 𝐶 ) ↔ ( ( 𝐵 − 𝐶 ) ≤ 𝐴 ∧ 𝐴 ≤ ( 𝐵 + 𝐶 ) ) ) ) |
| 17 | 3 16 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ 𝐶 ↔ ( ( 𝐵 − 𝐶 ) ≤ 𝐴 ∧ 𝐴 ≤ ( 𝐵 + 𝐶 ) ) ) ) |