This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a symmetric closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elicc4abs | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( ( 𝐴 − 𝐵 ) [,] ( 𝐴 + 𝐵 ) ) ↔ ( abs ‘ ( 𝐶 − 𝐴 ) ) ≤ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 − 𝐵 ) ∈ ℝ ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 − 𝐵 ) ∈ ℝ ) |
| 3 | 2 | rexrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 − 𝐵 ) ∈ ℝ* ) |
| 4 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) | |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 6 | 5 | rexrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ* ) |
| 7 | rexr | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℝ* ) | |
| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ* ) |
| 9 | elicc4 | ⊢ ( ( ( 𝐴 − 𝐵 ) ∈ ℝ* ∧ ( 𝐴 + 𝐵 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( ( 𝐴 − 𝐵 ) [,] ( 𝐴 + 𝐵 ) ) ↔ ( ( 𝐴 − 𝐵 ) ≤ 𝐶 ∧ 𝐶 ≤ ( 𝐴 + 𝐵 ) ) ) ) | |
| 10 | 3 6 8 9 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( ( 𝐴 − 𝐵 ) [,] ( 𝐴 + 𝐵 ) ) ↔ ( ( 𝐴 − 𝐵 ) ≤ 𝐶 ∧ 𝐶 ≤ ( 𝐴 + 𝐵 ) ) ) ) |
| 11 | absdifle | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ ( 𝐶 − 𝐴 ) ) ≤ 𝐵 ↔ ( ( 𝐴 − 𝐵 ) ≤ 𝐶 ∧ 𝐶 ≤ ( 𝐴 + 𝐵 ) ) ) ) | |
| 12 | 11 | 3coml | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( abs ‘ ( 𝐶 − 𝐴 ) ) ≤ 𝐵 ↔ ( ( 𝐴 − 𝐵 ) ≤ 𝐶 ∧ 𝐶 ≤ ( 𝐴 + 𝐵 ) ) ) ) |
| 13 | 10 12 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ( ( 𝐴 − 𝐵 ) [,] ( 𝐴 + 𝐵 ) ) ↔ ( abs ‘ ( 𝐶 − 𝐴 ) ) ≤ 𝐵 ) ) |