This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a difference and 'less than or equal to' relation. (Contributed by Paul Chapman, 18-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absdifle | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( abs ` ( A - B ) ) <_ C <-> ( ( B - C ) <_ A /\ A <_ ( B + C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubcl | |- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR ) |
|
| 2 | absle | |- ( ( ( A - B ) e. RR /\ C e. RR ) -> ( ( abs ` ( A - B ) ) <_ C <-> ( -u C <_ ( A - B ) /\ ( A - B ) <_ C ) ) ) |
|
| 3 | 1 2 | stoic3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( abs ` ( A - B ) ) <_ C <-> ( -u C <_ ( A - B ) /\ ( A - B ) <_ C ) ) ) |
| 4 | renegcl | |- ( C e. RR -> -u C e. RR ) |
|
| 5 | leaddsub2 | |- ( ( B e. RR /\ -u C e. RR /\ A e. RR ) -> ( ( B + -u C ) <_ A <-> -u C <_ ( A - B ) ) ) |
|
| 6 | 4 5 | syl3an2 | |- ( ( B e. RR /\ C e. RR /\ A e. RR ) -> ( ( B + -u C ) <_ A <-> -u C <_ ( A - B ) ) ) |
| 7 | 6 | 3comr | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( B + -u C ) <_ A <-> -u C <_ ( A - B ) ) ) |
| 8 | recn | |- ( B e. RR -> B e. CC ) |
|
| 9 | recn | |- ( C e. RR -> C e. CC ) |
|
| 10 | negsub | |- ( ( B e. CC /\ C e. CC ) -> ( B + -u C ) = ( B - C ) ) |
|
| 11 | 8 9 10 | syl2an | |- ( ( B e. RR /\ C e. RR ) -> ( B + -u C ) = ( B - C ) ) |
| 12 | 11 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B + -u C ) = ( B - C ) ) |
| 13 | 12 | breq1d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( B + -u C ) <_ A <-> ( B - C ) <_ A ) ) |
| 14 | 7 13 | bitr3d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -u C <_ ( A - B ) <-> ( B - C ) <_ A ) ) |
| 15 | lesubadd2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - B ) <_ C <-> A <_ ( B + C ) ) ) |
|
| 16 | 14 15 | anbi12d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( -u C <_ ( A - B ) /\ ( A - B ) <_ C ) <-> ( ( B - C ) <_ A /\ A <_ ( B + C ) ) ) ) |
| 17 | 3 16 | bitrd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( abs ` ( A - B ) ) <_ C <-> ( ( B - C ) <_ A /\ A <_ ( B + C ) ) ) ) |