This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The regular absolute value function on the complex numbers is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absabv | ⊢ abs ∈ ( AbsVal ‘ ℂfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | ⊢ ( ⊤ → ( AbsVal ‘ ℂfld ) = ( AbsVal ‘ ℂfld ) ) | |
| 2 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 3 | 2 | a1i | ⊢ ( ⊤ → ℂ = ( Base ‘ ℂfld ) ) |
| 4 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 5 | 4 | a1i | ⊢ ( ⊤ → + = ( +g ‘ ℂfld ) ) |
| 6 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 7 | 6 | a1i | ⊢ ( ⊤ → · = ( .r ‘ ℂfld ) ) |
| 8 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 9 | 8 | a1i | ⊢ ( ⊤ → 0 = ( 0g ‘ ℂfld ) ) |
| 10 | cnring | ⊢ ℂfld ∈ Ring | |
| 11 | 10 | a1i | ⊢ ( ⊤ → ℂfld ∈ Ring ) |
| 12 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 13 | 12 | a1i | ⊢ ( ⊤ → abs : ℂ ⟶ ℝ ) |
| 14 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 15 | 14 | a1i | ⊢ ( ⊤ → ( abs ‘ 0 ) = 0 ) |
| 16 | absgt0 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ≠ 0 ↔ 0 < ( abs ‘ 𝑥 ) ) ) | |
| 17 | 16 | biimpa | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → 0 < ( abs ‘ 𝑥 ) ) |
| 18 | 17 | 3adant1 | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → 0 < ( abs ‘ 𝑥 ) ) |
| 19 | absmul | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝑥 · 𝑦 ) ) = ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) ) | |
| 20 | 19 | ad2ant2r | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( abs ‘ ( 𝑥 · 𝑦 ) ) = ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) ) |
| 21 | 20 | 3adant1 | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( abs ‘ ( 𝑥 · 𝑦 ) ) = ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) ) |
| 22 | abstri | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( abs ‘ 𝑥 ) + ( abs ‘ 𝑦 ) ) ) | |
| 23 | 22 | ad2ant2r | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( abs ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( abs ‘ 𝑥 ) + ( abs ‘ 𝑦 ) ) ) |
| 24 | 23 | 3adant1 | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( abs ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( abs ‘ 𝑥 ) + ( abs ‘ 𝑦 ) ) ) |
| 25 | 1 3 5 7 9 11 13 15 18 21 24 | isabvd | ⊢ ( ⊤ → abs ∈ ( AbsVal ‘ ℂfld ) ) |
| 26 | 25 | mptru | ⊢ abs ∈ ( AbsVal ‘ ℂfld ) |