This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The regular absolute value function on the complex numbers is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absabv | |- abs e. ( AbsVal ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | |- ( T. -> ( AbsVal ` CCfld ) = ( AbsVal ` CCfld ) ) |
|
| 2 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 3 | 2 | a1i | |- ( T. -> CC = ( Base ` CCfld ) ) |
| 4 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 5 | 4 | a1i | |- ( T. -> + = ( +g ` CCfld ) ) |
| 6 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 7 | 6 | a1i | |- ( T. -> x. = ( .r ` CCfld ) ) |
| 8 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 9 | 8 | a1i | |- ( T. -> 0 = ( 0g ` CCfld ) ) |
| 10 | cnring | |- CCfld e. Ring |
|
| 11 | 10 | a1i | |- ( T. -> CCfld e. Ring ) |
| 12 | absf | |- abs : CC --> RR |
|
| 13 | 12 | a1i | |- ( T. -> abs : CC --> RR ) |
| 14 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 15 | 14 | a1i | |- ( T. -> ( abs ` 0 ) = 0 ) |
| 16 | absgt0 | |- ( x e. CC -> ( x =/= 0 <-> 0 < ( abs ` x ) ) ) |
|
| 17 | 16 | biimpa | |- ( ( x e. CC /\ x =/= 0 ) -> 0 < ( abs ` x ) ) |
| 18 | 17 | 3adant1 | |- ( ( T. /\ x e. CC /\ x =/= 0 ) -> 0 < ( abs ` x ) ) |
| 19 | absmul | |- ( ( x e. CC /\ y e. CC ) -> ( abs ` ( x x. y ) ) = ( ( abs ` x ) x. ( abs ` y ) ) ) |
|
| 20 | 19 | ad2ant2r | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( abs ` ( x x. y ) ) = ( ( abs ` x ) x. ( abs ` y ) ) ) |
| 21 | 20 | 3adant1 | |- ( ( T. /\ ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( abs ` ( x x. y ) ) = ( ( abs ` x ) x. ( abs ` y ) ) ) |
| 22 | abstri | |- ( ( x e. CC /\ y e. CC ) -> ( abs ` ( x + y ) ) <_ ( ( abs ` x ) + ( abs ` y ) ) ) |
|
| 23 | 22 | ad2ant2r | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( abs ` ( x + y ) ) <_ ( ( abs ` x ) + ( abs ` y ) ) ) |
| 24 | 23 | 3adant1 | |- ( ( T. /\ ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( abs ` ( x + y ) ) <_ ( ( abs ` x ) + ( abs ` y ) ) ) |
| 25 | 1 3 5 7 9 11 13 15 18 21 24 | isabvd | |- ( T. -> abs e. ( AbsVal ` CCfld ) ) |
| 26 | 25 | mptru | |- abs e. ( AbsVal ` CCfld ) |