This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for addition and subtraction in abelian groups. ( subadd23d analog.) (Contributed by AV, 2-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ablsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ablsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | ablsubadd23 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑍 − 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ablsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | ablsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | 3ancomb | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) | |
| 5 | 4 | biimpi | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 6 | 1 2 3 | abladdsub | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) − 𝑌 ) = ( ( 𝑋 − 𝑌 ) + 𝑍 ) ) |
| 7 | 5 6 | sylan2 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) − 𝑌 ) = ( ( 𝑋 − 𝑌 ) + 𝑍 ) ) |
| 8 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 9 | 1 2 3 | grpaddsubass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) − 𝑌 ) = ( 𝑋 + ( 𝑍 − 𝑌 ) ) ) |
| 10 | 8 5 9 | syl2an | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) − 𝑌 ) = ( 𝑋 + ( 𝑍 − 𝑌 ) ) ) |
| 11 | 7 10 | eqtr3d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑍 − 𝑌 ) ) ) |