This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for addition and subtraction in abelian groups. ( subadd23d analog.) (Contributed by AV, 2-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsubadd.b | |- B = ( Base ` G ) |
|
| ablsubadd.p | |- .+ = ( +g ` G ) |
||
| ablsubadd.m | |- .- = ( -g ` G ) |
||
| Assertion | ablsubadd23 | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Y ) .+ Z ) = ( X .+ ( Z .- Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubadd.b | |- B = ( Base ` G ) |
|
| 2 | ablsubadd.p | |- .+ = ( +g ` G ) |
|
| 3 | ablsubadd.m | |- .- = ( -g ` G ) |
|
| 4 | 3ancomb | |- ( ( X e. B /\ Y e. B /\ Z e. B ) <-> ( X e. B /\ Z e. B /\ Y e. B ) ) |
|
| 5 | 4 | biimpi | |- ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( X e. B /\ Z e. B /\ Y e. B ) ) |
| 6 | 1 2 3 | abladdsub | |- ( ( G e. Abel /\ ( X e. B /\ Z e. B /\ Y e. B ) ) -> ( ( X .+ Z ) .- Y ) = ( ( X .- Y ) .+ Z ) ) |
| 7 | 5 6 | sylan2 | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Z ) .- Y ) = ( ( X .- Y ) .+ Z ) ) |
| 8 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 9 | 1 2 3 | grpaddsubass | |- ( ( G e. Grp /\ ( X e. B /\ Z e. B /\ Y e. B ) ) -> ( ( X .+ Z ) .- Y ) = ( X .+ ( Z .- Y ) ) ) |
| 10 | 8 5 9 | syl2an | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Z ) .- Y ) = ( X .+ ( Z .- Y ) ) ) |
| 11 | 7 10 | eqtr3d | |- ( ( G e. Abel /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .- Y ) .+ Z ) = ( X .+ ( Z .- Y ) ) ) |