This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double subtraction and addition in abelian groups. ( cnambpcma analog.) (Contributed by AV, 3-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ablsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ablsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | ablsubaddsub | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 − 𝑌 ) + 𝑍 ) − 𝑋 ) = ( 𝑍 − 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ablsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | ablsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | 1 2 3 | ablsubadd23 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑍 − 𝑌 ) ) ) |
| 5 | 4 | oveq1d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 − 𝑌 ) + 𝑍 ) − 𝑋 ) = ( ( 𝑋 + ( 𝑍 − 𝑌 ) ) − 𝑋 ) ) |
| 6 | simpl | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐺 ∈ Abel ) | |
| 7 | simpr1 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 8 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 10 | simpr3 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 11 | simpr2 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 12 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑍 − 𝑌 ) ∈ 𝐵 ) |
| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 − 𝑌 ) ∈ 𝐵 ) |
| 14 | 1 2 | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑍 − 𝑌 ) ∈ 𝐵 ) → ( 𝑋 + ( 𝑍 − 𝑌 ) ) = ( ( 𝑍 − 𝑌 ) + 𝑋 ) ) |
| 15 | 6 7 13 14 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 + ( 𝑍 − 𝑌 ) ) = ( ( 𝑍 − 𝑌 ) + 𝑋 ) ) |
| 16 | 15 | oveq1d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + ( 𝑍 − 𝑌 ) ) − 𝑋 ) = ( ( ( 𝑍 − 𝑌 ) + 𝑋 ) − 𝑋 ) ) |
| 17 | 1 2 3 | grpaddsubass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑍 − 𝑌 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( 𝑍 − 𝑌 ) + 𝑋 ) − 𝑋 ) = ( ( 𝑍 − 𝑌 ) + ( 𝑋 − 𝑋 ) ) ) |
| 18 | 9 13 7 7 17 | syl13anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑍 − 𝑌 ) + 𝑋 ) − 𝑋 ) = ( ( 𝑍 − 𝑌 ) + ( 𝑋 − 𝑋 ) ) ) |
| 19 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 20 | 1 19 3 | grpsubid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 − 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 21 | 9 7 20 | syl2anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 − 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 22 | 21 | oveq2d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑍 − 𝑌 ) + ( 𝑋 − 𝑋 ) ) = ( ( 𝑍 − 𝑌 ) + ( 0g ‘ 𝐺 ) ) ) |
| 23 | 1 2 19 9 13 | grpridd | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑍 − 𝑌 ) + ( 0g ‘ 𝐺 ) ) = ( 𝑍 − 𝑌 ) ) |
| 24 | 18 22 23 | 3eqtrd | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑍 − 𝑌 ) + 𝑋 ) − 𝑋 ) = ( 𝑍 − 𝑌 ) ) |
| 25 | 5 16 24 | 3eqtrd | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 − 𝑌 ) + 𝑍 ) − 𝑋 ) = ( 𝑍 − 𝑌 ) ) |