This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for double group division. (Contributed by NM, 29-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abldiv.1 | |- X = ran G |
|
| abldiv.3 | |- D = ( /g ` G ) |
||
| Assertion | ablodivdiv | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( ( A D B ) G C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abldiv.1 | |- X = ran G |
|
| 2 | abldiv.3 | |- D = ( /g ` G ) |
|
| 3 | ablogrpo | |- ( G e. AbelOp -> G e. GrpOp ) |
|
| 4 | 1 2 | grpodivdiv | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( A G ( C D B ) ) ) |
| 5 | 3 4 | sylan | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( A G ( C D B ) ) ) |
| 6 | 3ancomb | |- ( ( A e. X /\ B e. X /\ C e. X ) <-> ( A e. X /\ C e. X /\ B e. X ) ) |
|
| 7 | 1 2 | grpomuldivass | |- ( ( G e. GrpOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( ( A G C ) D B ) = ( A G ( C D B ) ) ) |
| 8 | 3 7 | sylan | |- ( ( G e. AbelOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( ( A G C ) D B ) = ( A G ( C D B ) ) ) |
| 9 | 1 2 | ablomuldiv | |- ( ( G e. AbelOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( ( A G C ) D B ) = ( ( A D B ) G C ) ) |
| 10 | 8 9 | eqtr3d | |- ( ( G e. AbelOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( A G ( C D B ) ) = ( ( A D B ) G C ) ) |
| 11 | 6 10 | sylan2b | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A G ( C D B ) ) = ( ( A D B ) G C ) ) |
| 12 | 5 11 | eqtrd | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( B D C ) ) = ( ( A D B ) G C ) ) |