This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double group division. (Contributed by NM, 24-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpdivf.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | ||
| Assertion | grpodivdiv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) ) = ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdivf.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | |
| 3 | simpl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐺 ∈ GrpOp ) | |
| 4 | simpr1 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 5 | 1 2 | grpodivcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐶 ) ∈ 𝑋 ) |
| 6 | 5 | 3adant3r1 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐷 𝐶 ) ∈ 𝑋 ) |
| 7 | eqid | ⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) | |
| 8 | 1 7 2 | grpodivval | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐵 𝐷 𝐶 ) ∈ 𝑋 ) → ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐷 𝐶 ) ) ) ) |
| 9 | 3 4 6 8 | syl3anc | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) ) = ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐷 𝐶 ) ) ) ) |
| 10 | 1 7 2 | grpoinvdiv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐷 𝐶 ) ) = ( 𝐶 𝐷 𝐵 ) ) |
| 11 | 10 | 3adant3r1 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐷 𝐶 ) ) = ( 𝐶 𝐷 𝐵 ) ) |
| 12 | 11 | oveq2d | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐷 𝐶 ) ) ) = ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) |
| 13 | 9 12 | eqtrd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) ) = ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) |