This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for group multiplication and division. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abldiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| abldiv.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | ||
| Assertion | ablomuldiv | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abldiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | abldiv.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | |
| 3 | 1 | ablocom | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) ) |
| 4 | 3 | 3adant3r3 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) ) |
| 5 | 4 | oveq1d | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐵 𝐺 𝐴 ) 𝐷 𝐶 ) ) |
| 6 | 3ancoma | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ↔ ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) | |
| 7 | ablogrpo | ⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) | |
| 8 | 1 2 | grpomuldivass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐵 𝐺 𝐴 ) 𝐷 𝐶 ) = ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) ) ) |
| 9 | 7 8 | sylan | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐵 𝐺 𝐴 ) 𝐷 𝐶 ) = ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) ) ) |
| 10 | 6 9 | sylan2b | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐵 𝐺 𝐴 ) 𝐷 𝐶 ) = ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) ) ) |
| 11 | simpr2 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 12 | 1 2 | grpodivcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) |
| 13 | 7 12 | syl3an1 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) |
| 14 | 13 | 3adant3r2 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) |
| 15 | 11 14 | jca | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) ) |
| 16 | 1 | ablocom | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) → ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |
| 17 | 16 | 3expb | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) ) → ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |
| 18 | 15 17 | syldan | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |
| 19 | 5 10 18 | 3eqtrd | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |