This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class abstraction defined by a formula not containing the abstraction variable is either the empty set or the universal class. (Contributed by Mario Carneiro, 29-Aug-2013) (Revised by BJ, 22-Mar-2020) Reduce axiom usage. (Revised by GG, 30-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ab0orv | |- ( { x | ph } = _V \/ { x | ph } = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | |- F/ y ph |
|
| 2 | nf3 | |- ( F/ y ph <-> ( A. y ph \/ A. y -. ph ) ) |
|
| 3 | 1 2 | mpbi | |- ( A. y ph \/ A. y -. ph ) |
| 4 | biidd | |- ( x = y -> ( ph <-> ph ) ) |
|
| 5 | 4 | eqabcbw | |- ( { x | ph } = { x | T. } <-> A. y ( ph <-> y e. { x | T. } ) ) |
| 6 | dfv2 | |- _V = { x | T. } |
|
| 7 | 6 | eqeq2i | |- ( { x | ph } = _V <-> { x | ph } = { x | T. } ) |
| 8 | vextru | |- y e. { x | T. } |
|
| 9 | 8 | tbt | |- ( ph <-> ( ph <-> y e. { x | T. } ) ) |
| 10 | 9 | albii | |- ( A. y ph <-> A. y ( ph <-> y e. { x | T. } ) ) |
| 11 | 5 7 10 | 3bitr4i | |- ( { x | ph } = _V <-> A. y ph ) |
| 12 | 4 | ab0w | |- ( { x | ph } = (/) <-> A. y -. ph ) |
| 13 | 11 12 | orbi12i | |- ( ( { x | ph } = _V \/ { x | ph } = (/) ) <-> ( A. y ph \/ A. y -. ph ) ) |
| 14 | 3 13 | mpbir | |- ( { x | ph } = _V \/ { x | ph } = (/) ) |