This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of ab0orv , shorter but using more axioms. (Contributed by Mario Carneiro, 29-Aug-2013) (Revised by BJ, 22-Mar-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ab0orvALT | ⊢ ( { 𝑥 ∣ 𝜑 } = V ∨ { 𝑥 ∣ 𝜑 } = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | dfnf5 | ⊢ ( Ⅎ 𝑥 𝜑 ↔ ( { 𝑥 ∣ 𝜑 } = V ∨ { 𝑥 ∣ 𝜑 } = ∅ ) ) | |
| 3 | 1 2 | mpbi | ⊢ ( { 𝑥 ∣ 𝜑 } = V ∨ { 𝑥 ∣ 𝜑 } = ∅ ) |