This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 6lcm4e12 | ⊢ ( 6 lcm 4 ) = ; 1 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6cn | ⊢ 6 ∈ ℂ | |
| 2 | 4cn | ⊢ 4 ∈ ℂ | |
| 3 | 1 2 | mulcli | ⊢ ( 6 · 4 ) ∈ ℂ |
| 4 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 5 | 4 | nn0zi | ⊢ 6 ∈ ℤ |
| 6 | 4z | ⊢ 4 ∈ ℤ | |
| 7 | lcmcl | ⊢ ( ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 6 lcm 4 ) ∈ ℕ0 ) | |
| 8 | 7 | nn0cnd | ⊢ ( ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 6 lcm 4 ) ∈ ℂ ) |
| 9 | 5 6 8 | mp2an | ⊢ ( 6 lcm 4 ) ∈ ℂ |
| 10 | gcdcl | ⊢ ( ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 6 gcd 4 ) ∈ ℕ0 ) | |
| 11 | 10 | nn0cnd | ⊢ ( ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) → ( 6 gcd 4 ) ∈ ℂ ) |
| 12 | 5 6 11 | mp2an | ⊢ ( 6 gcd 4 ) ∈ ℂ |
| 13 | 5 6 | pm3.2i | ⊢ ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) |
| 14 | 4ne0 | ⊢ 4 ≠ 0 | |
| 15 | 14 | neii | ⊢ ¬ 4 = 0 |
| 16 | 15 | intnan | ⊢ ¬ ( 6 = 0 ∧ 4 = 0 ) |
| 17 | gcdn0cl | ⊢ ( ( ( 6 ∈ ℤ ∧ 4 ∈ ℤ ) ∧ ¬ ( 6 = 0 ∧ 4 = 0 ) ) → ( 6 gcd 4 ) ∈ ℕ ) | |
| 18 | 13 16 17 | mp2an | ⊢ ( 6 gcd 4 ) ∈ ℕ |
| 19 | 18 | nnne0i | ⊢ ( 6 gcd 4 ) ≠ 0 |
| 20 | 12 19 | pm3.2i | ⊢ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) |
| 21 | 6nn | ⊢ 6 ∈ ℕ | |
| 22 | 4nn | ⊢ 4 ∈ ℕ | |
| 23 | 21 22 | pm3.2i | ⊢ ( 6 ∈ ℕ ∧ 4 ∈ ℕ ) |
| 24 | lcmgcdnn | ⊢ ( ( 6 ∈ ℕ ∧ 4 ∈ ℕ ) → ( ( 6 lcm 4 ) · ( 6 gcd 4 ) ) = ( 6 · 4 ) ) | |
| 25 | 23 24 | mp1i | ⊢ ( ( ( 6 · 4 ) ∈ ℂ ∧ ( 6 lcm 4 ) ∈ ℂ ∧ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) ) → ( ( 6 lcm 4 ) · ( 6 gcd 4 ) ) = ( 6 · 4 ) ) |
| 26 | 25 | eqcomd | ⊢ ( ( ( 6 · 4 ) ∈ ℂ ∧ ( 6 lcm 4 ) ∈ ℂ ∧ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) ) → ( 6 · 4 ) = ( ( 6 lcm 4 ) · ( 6 gcd 4 ) ) ) |
| 27 | divmul3 | ⊢ ( ( ( 6 · 4 ) ∈ ℂ ∧ ( 6 lcm 4 ) ∈ ℂ ∧ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) ) → ( ( ( 6 · 4 ) / ( 6 gcd 4 ) ) = ( 6 lcm 4 ) ↔ ( 6 · 4 ) = ( ( 6 lcm 4 ) · ( 6 gcd 4 ) ) ) ) | |
| 28 | 26 27 | mpbird | ⊢ ( ( ( 6 · 4 ) ∈ ℂ ∧ ( 6 lcm 4 ) ∈ ℂ ∧ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) ) → ( ( 6 · 4 ) / ( 6 gcd 4 ) ) = ( 6 lcm 4 ) ) |
| 29 | 28 | eqcomd | ⊢ ( ( ( 6 · 4 ) ∈ ℂ ∧ ( 6 lcm 4 ) ∈ ℂ ∧ ( ( 6 gcd 4 ) ∈ ℂ ∧ ( 6 gcd 4 ) ≠ 0 ) ) → ( 6 lcm 4 ) = ( ( 6 · 4 ) / ( 6 gcd 4 ) ) ) |
| 30 | 3 9 20 29 | mp3an | ⊢ ( 6 lcm 4 ) = ( ( 6 · 4 ) / ( 6 gcd 4 ) ) |
| 31 | 6gcd4e2 | ⊢ ( 6 gcd 4 ) = 2 | |
| 32 | 31 | oveq2i | ⊢ ( ( 6 · 4 ) / ( 6 gcd 4 ) ) = ( ( 6 · 4 ) / 2 ) |
| 33 | 2cn | ⊢ 2 ∈ ℂ | |
| 34 | 2ne0 | ⊢ 2 ≠ 0 | |
| 35 | 1 2 33 34 | divassi | ⊢ ( ( 6 · 4 ) / 2 ) = ( 6 · ( 4 / 2 ) ) |
| 36 | 4div2e2 | ⊢ ( 4 / 2 ) = 2 | |
| 37 | 36 | oveq2i | ⊢ ( 6 · ( 4 / 2 ) ) = ( 6 · 2 ) |
| 38 | 6t2e12 | ⊢ ( 6 · 2 ) = ; 1 2 | |
| 39 | 35 37 38 | 3eqtri | ⊢ ( ( 6 · 4 ) / 2 ) = ; 1 2 |
| 40 | 30 32 39 | 3eqtri | ⊢ ( 6 lcm 4 ) = ; 1 2 |