This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A walk of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 8-Feb-2021) (Revised by AV, 24-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 | |
| 3wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 | ||
| 3wlkd.s | ⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) | ||
| 3wlkd.n | ⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) | ||
| 3wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) | ||
| 3wlkd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| 3wlkd.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | 3wlkond | ⊢ ( 𝜑 → 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 | |
| 2 | 3wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 | |
| 3 | 3wlkd.s | ⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) | |
| 4 | 3wlkd.n | ⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) | |
| 5 | 3wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) | |
| 6 | 3wlkd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 7 | 3wlkd.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 8 | 1 2 3 4 5 6 7 | 3wlkd | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 9 | 8 | wlkonwlk1l | ⊢ ( 𝜑 → 𝐹 ( ( 𝑃 ‘ 0 ) ( WalksOn ‘ 𝐺 ) ( lastS ‘ 𝑃 ) ) 𝑃 ) |
| 10 | 1 2 3 | 3wlkdlem3 | ⊢ ( 𝜑 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ) |
| 11 | simpll | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( 𝑃 ‘ 0 ) = 𝐴 ) | |
| 12 | 11 | eqcomd | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → 𝐴 = ( 𝑃 ‘ 0 ) ) |
| 13 | 10 12 | syl | ⊢ ( 𝜑 → 𝐴 = ( 𝑃 ‘ 0 ) ) |
| 14 | 1 | fveq2i | ⊢ ( lastS ‘ 𝑃 ) = ( lastS ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) |
| 15 | fvex | ⊢ ( 𝑃 ‘ 3 ) ∈ V | |
| 16 | eleq1 | ⊢ ( ( 𝑃 ‘ 3 ) = 𝐷 → ( ( 𝑃 ‘ 3 ) ∈ V ↔ 𝐷 ∈ V ) ) | |
| 17 | 15 16 | mpbii | ⊢ ( ( 𝑃 ‘ 3 ) = 𝐷 → 𝐷 ∈ V ) |
| 18 | lsws4 | ⊢ ( 𝐷 ∈ V → ( lastS ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = 𝐷 ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝑃 ‘ 3 ) = 𝐷 → ( lastS ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = 𝐷 ) |
| 20 | 14 19 | eqtr2id | ⊢ ( ( 𝑃 ‘ 3 ) = 𝐷 → 𝐷 = ( lastS ‘ 𝑃 ) ) |
| 21 | 20 | ad2antll | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → 𝐷 = ( lastS ‘ 𝑃 ) ) |
| 22 | 10 21 | syl | ⊢ ( 𝜑 → 𝐷 = ( lastS ‘ 𝑃 ) ) |
| 23 | 13 22 | oveq12d | ⊢ ( 𝜑 → ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐷 ) = ( ( 𝑃 ‘ 0 ) ( WalksOn ‘ 𝐺 ) ( lastS ‘ 𝑃 ) ) ) |
| 24 | 23 | breqd | ⊢ ( 𝜑 → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐷 ) 𝑃 ↔ 𝐹 ( ( 𝑃 ‘ 0 ) ( WalksOn ‘ 𝐺 ) ( lastS ‘ 𝑃 ) ) 𝑃 ) ) |
| 25 | 9 24 | mpbird | ⊢ ( 𝜑 → 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐷 ) 𝑃 ) |