This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A walk of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 8-Feb-2021) (Revised by AV, 24-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3wlkd.p | |- P = <" A B C D "> |
|
| 3wlkd.f | |- F = <" J K L "> |
||
| 3wlkd.s | |- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
||
| 3wlkd.n | |- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
||
| 3wlkd.e | |- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) |
||
| 3wlkd.v | |- V = ( Vtx ` G ) |
||
| 3wlkd.i | |- I = ( iEdg ` G ) |
||
| Assertion | 3wlkond | |- ( ph -> F ( A ( WalksOn ` G ) D ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | |- P = <" A B C D "> |
|
| 2 | 3wlkd.f | |- F = <" J K L "> |
|
| 3 | 3wlkd.s | |- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
|
| 4 | 3wlkd.n | |- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
|
| 5 | 3wlkd.e | |- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) |
|
| 6 | 3wlkd.v | |- V = ( Vtx ` G ) |
|
| 7 | 3wlkd.i | |- I = ( iEdg ` G ) |
|
| 8 | 1 2 3 4 5 6 7 | 3wlkd | |- ( ph -> F ( Walks ` G ) P ) |
| 9 | 8 | wlkonwlk1l | |- ( ph -> F ( ( P ` 0 ) ( WalksOn ` G ) ( lastS ` P ) ) P ) |
| 10 | 1 2 3 | 3wlkdlem3 | |- ( ph -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) ) |
| 11 | simpll | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( P ` 0 ) = A ) |
|
| 12 | 11 | eqcomd | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> A = ( P ` 0 ) ) |
| 13 | 10 12 | syl | |- ( ph -> A = ( P ` 0 ) ) |
| 14 | 1 | fveq2i | |- ( lastS ` P ) = ( lastS ` <" A B C D "> ) |
| 15 | fvex | |- ( P ` 3 ) e. _V |
|
| 16 | eleq1 | |- ( ( P ` 3 ) = D -> ( ( P ` 3 ) e. _V <-> D e. _V ) ) |
|
| 17 | 15 16 | mpbii | |- ( ( P ` 3 ) = D -> D e. _V ) |
| 18 | lsws4 | |- ( D e. _V -> ( lastS ` <" A B C D "> ) = D ) |
|
| 19 | 17 18 | syl | |- ( ( P ` 3 ) = D -> ( lastS ` <" A B C D "> ) = D ) |
| 20 | 14 19 | eqtr2id | |- ( ( P ` 3 ) = D -> D = ( lastS ` P ) ) |
| 21 | 20 | ad2antll | |- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> D = ( lastS ` P ) ) |
| 22 | 10 21 | syl | |- ( ph -> D = ( lastS ` P ) ) |
| 23 | 13 22 | oveq12d | |- ( ph -> ( A ( WalksOn ` G ) D ) = ( ( P ` 0 ) ( WalksOn ` G ) ( lastS ` P ) ) ) |
| 24 | 23 | breqd | |- ( ph -> ( F ( A ( WalksOn ` G ) D ) P <-> F ( ( P ` 0 ) ( WalksOn ` G ) ( lastS ` P ) ) P ) ) |
| 25 | 9 24 | mpbird | |- ( ph -> F ( A ( WalksOn ` G ) D ) P ) |