This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol of a 4 letter word is its fourth symbol. (Contributed by AV, 8-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lsws4 | ⊢ ( 𝐷 ∈ 𝑉 → ( lastS ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s4cli | ⊢ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ∈ Word V | |
| 2 | lsw | ⊢ ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ∈ Word V → ( lastS ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ ( ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) − 1 ) ) ) | |
| 3 | 1 2 | mp1i | ⊢ ( 𝐷 ∈ 𝑉 → ( lastS ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ ( ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) − 1 ) ) ) |
| 4 | s4len | ⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = 4 | |
| 5 | 4 | oveq1i | ⊢ ( ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) − 1 ) = ( 4 − 1 ) |
| 6 | 4m1e3 | ⊢ ( 4 − 1 ) = 3 | |
| 7 | 5 6 | eqtri | ⊢ ( ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) − 1 ) = 3 |
| 8 | 7 | fveq2i | ⊢ ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ ( ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) − 1 ) ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) |
| 9 | 8 | a1i | ⊢ ( 𝐷 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ ( ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) − 1 ) ) = ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) ) |
| 10 | s4fv3 | ⊢ ( 𝐷 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ‘ 3 ) = 𝐷 ) | |
| 11 | 3 9 10 | 3eqtrd | ⊢ ( 𝐷 ∈ 𝑉 → ( lastS ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = 𝐷 ) |