This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construction of a trail from two given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017) (Revised by AV, 8-Feb-2021) (Revised by AV, 24-Mar-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 | |
| 3wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 | ||
| 3wlkd.s | ⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) | ||
| 3wlkd.n | ⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) | ||
| 3wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) | ||
| 3wlkd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| 3wlkd.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| 3trld.n | ⊢ ( 𝜑 → ( 𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿 ) ) | ||
| Assertion | 3trld | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 | |
| 2 | 3wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 | |
| 3 | 3wlkd.s | ⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) | |
| 4 | 3wlkd.n | ⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) | |
| 5 | 3wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) | |
| 6 | 3wlkd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 7 | 3wlkd.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 8 | 3trld.n | ⊢ ( 𝜑 → ( 𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿 ) ) | |
| 9 | 1 2 3 4 5 6 7 | 3wlkd | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 10 | 1 2 3 4 5 | 3wlkdlem7 | ⊢ ( 𝜑 → ( 𝐽 ∈ V ∧ 𝐾 ∈ V ∧ 𝐿 ∈ V ) ) |
| 11 | funcnvs3 | ⊢ ( ( ( 𝐽 ∈ V ∧ 𝐾 ∈ V ∧ 𝐿 ∈ V ) ∧ ( 𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿 ) ) → Fun ◡ 〈“ 𝐽 𝐾 𝐿 ”〉 ) | |
| 12 | 10 8 11 | syl2anc | ⊢ ( 𝜑 → Fun ◡ 〈“ 𝐽 𝐾 𝐿 ”〉 ) |
| 13 | 2 | cnveqi | ⊢ ◡ 𝐹 = ◡ 〈“ 𝐽 𝐾 𝐿 ”〉 |
| 14 | 13 | funeqi | ⊢ ( Fun ◡ 𝐹 ↔ Fun ◡ 〈“ 𝐽 𝐾 𝐿 ”〉 ) |
| 15 | 12 14 | sylibr | ⊢ ( 𝜑 → Fun ◡ 𝐹 ) |
| 16 | istrl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) ) | |
| 17 | 9 15 16 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |