This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for 3pthd . (Contributed by AV, 9-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 | |
| 3wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 | ||
| 3wlkd.s | ⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) | ||
| 3wlkd.n | ⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) | ||
| Assertion | 3pthdlem1 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 | |
| 2 | 3wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 | |
| 3 | 3wlkd.s | ⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) | |
| 4 | 3wlkd.n | ⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) | |
| 5 | 1 2 3 | 3wlkdlem3 | ⊢ ( 𝜑 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ) |
| 6 | simpr1l | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → 𝐴 ≠ 𝐵 ) | |
| 7 | simpl | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( 𝑃 ‘ 0 ) = 𝐴 ) | |
| 8 | 7 | adantr | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( 𝑃 ‘ 0 ) = 𝐴 ) |
| 9 | simpr | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( 𝑃 ‘ 1 ) = 𝐵 ) | |
| 10 | 9 | adantr | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( 𝑃 ‘ 1 ) = 𝐵 ) |
| 11 | 8 10 | neeq12d | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ↔ 𝐴 ≠ 𝐵 ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ↔ 𝐴 ≠ 𝐵 ) ) |
| 13 | 6 12 | mpbird | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
| 14 | 13 | a1d | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 15 | simpr1r | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → 𝐴 ≠ 𝐶 ) | |
| 16 | simpl | ⊢ ( ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) → ( 𝑃 ‘ 2 ) = 𝐶 ) | |
| 17 | 16 | adantl | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( 𝑃 ‘ 2 ) = 𝐶 ) |
| 18 | 8 17 | neeq12d | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ↔ 𝐴 ≠ 𝐶 ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ↔ 𝐴 ≠ 𝐶 ) ) |
| 20 | 15 19 | mpbird | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) |
| 21 | 20 | a1d | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 0 ≠ 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 22 | 14 21 | jca | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 0 ≠ 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 23 | eqid | ⊢ 1 = 1 | |
| 24 | 23 | 2a1i | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( ( 𝑃 ‘ 1 ) = ( 𝑃 ‘ 1 ) → 1 = 1 ) ) |
| 25 | 24 | necon3d | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 26 | simpr2l | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → 𝐵 ≠ 𝐶 ) | |
| 27 | 10 17 | neeq12d | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ↔ 𝐵 ≠ 𝐶 ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ↔ 𝐵 ≠ 𝐶 ) ) |
| 29 | 26 28 | mpbird | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) |
| 30 | 29 | a1d | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 1 ≠ 2 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 31 | 25 30 | jca | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 1 ≠ 2 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 32 | 29 | necomd | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) |
| 33 | 32 | a1d | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 34 | eqid | ⊢ 2 = 2 | |
| 35 | 34 | 2a1i | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( ( 𝑃 ‘ 2 ) = ( 𝑃 ‘ 2 ) → 2 = 2 ) ) |
| 36 | 35 | necon3d | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 2 ≠ 2 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 37 | simpr2r | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → 𝐵 ≠ 𝐷 ) | |
| 38 | simpr | ⊢ ( ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) → ( 𝑃 ‘ 3 ) = 𝐷 ) | |
| 39 | 38 | adantl | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( 𝑃 ‘ 3 ) = 𝐷 ) |
| 40 | 10 39 | neeq12d | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 3 ) ↔ 𝐵 ≠ 𝐷 ) ) |
| 41 | 40 | adantr | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 3 ) ↔ 𝐵 ≠ 𝐷 ) ) |
| 42 | 37 41 | mpbird | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 3 ) ) |
| 43 | 42 | necomd | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 1 ) ) |
| 44 | 43 | a1d | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 3 ≠ 1 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 45 | simp3 | ⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) → 𝐶 ≠ 𝐷 ) | |
| 46 | 45 | necomd | ⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) → 𝐷 ≠ 𝐶 ) |
| 47 | 46 | adantl | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → 𝐷 ≠ 𝐶 ) |
| 48 | simpl | ⊢ ( ( ( 𝑃 ‘ 3 ) = 𝐷 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 3 ) = 𝐷 ) | |
| 49 | simpr | ⊢ ( ( ( 𝑃 ‘ 3 ) = 𝐷 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 2 ) = 𝐶 ) | |
| 50 | 48 49 | neeq12d | ⊢ ( ( ( 𝑃 ‘ 3 ) = 𝐷 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 2 ) ↔ 𝐷 ≠ 𝐶 ) ) |
| 51 | 50 | ancoms | ⊢ ( ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) → ( ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 2 ) ↔ 𝐷 ≠ 𝐶 ) ) |
| 52 | 51 | adantl | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 2 ) ↔ 𝐷 ≠ 𝐶 ) ) |
| 53 | 52 | adantr | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 2 ) ↔ 𝐷 ≠ 𝐶 ) ) |
| 54 | 47 53 | mpbird | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 2 ) ) |
| 55 | 54 | a1d | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( 3 ≠ 2 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 56 | 44 55 | jca | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( ( 3 ≠ 1 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 3 ≠ 2 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 57 | 33 36 56 | jca31 | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( ( ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 2 ≠ 2 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 2 ) ) ) ∧ ( ( 3 ≠ 1 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 3 ≠ 2 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) |
| 58 | 22 31 57 | jca31 | ⊢ ( ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( ( ( ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 0 ≠ 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ∧ ( ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 1 ≠ 2 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ∧ ( ( ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 2 ≠ 2 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 2 ) ) ) ∧ ( ( 3 ≠ 1 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 3 ≠ 2 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) ) |
| 59 | 5 4 58 | syl2anc | ⊢ ( 𝜑 → ( ( ( ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 0 ≠ 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ∧ ( ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 1 ≠ 2 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ∧ ( ( ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 2 ≠ 2 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 2 ) ) ) ∧ ( ( 3 ≠ 1 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 3 ≠ 2 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) ) |
| 60 | 1 | fveq2i | ⊢ ( ♯ ‘ 𝑃 ) = ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) |
| 61 | s4len | ⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) = 4 | |
| 62 | 60 61 | eqtri | ⊢ ( ♯ ‘ 𝑃 ) = 4 |
| 63 | 62 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ..^ 4 ) |
| 64 | fzo0to42pr | ⊢ ( 0 ..^ 4 ) = ( { 0 , 1 } ∪ { 2 , 3 } ) | |
| 65 | 63 64 | eqtri | ⊢ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( { 0 , 1 } ∪ { 2 , 3 } ) |
| 66 | 65 | raleqi | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ↔ ∀ 𝑘 ∈ ( { 0 , 1 } ∪ { 2 , 3 } ) ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 67 | ralunb | ⊢ ( ∀ 𝑘 ∈ ( { 0 , 1 } ∪ { 2 , 3 } ) ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ↔ ( ∀ 𝑘 ∈ { 0 , 1 } ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ∧ ∀ 𝑘 ∈ { 2 , 3 } ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) | |
| 68 | c0ex | ⊢ 0 ∈ V | |
| 69 | 1ex | ⊢ 1 ∈ V | |
| 70 | neeq1 | ⊢ ( 𝑘 = 0 → ( 𝑘 ≠ 1 ↔ 0 ≠ 1 ) ) | |
| 71 | fveq2 | ⊢ ( 𝑘 = 0 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 0 ) ) | |
| 72 | 71 | neeq1d | ⊢ ( 𝑘 = 0 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 73 | 70 72 | imbi12d | ⊢ ( 𝑘 = 0 → ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ↔ ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
| 74 | neeq1 | ⊢ ( 𝑘 = 0 → ( 𝑘 ≠ 2 ↔ 0 ≠ 2 ) ) | |
| 75 | 71 | neeq1d | ⊢ ( 𝑘 = 0 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 76 | 74 75 | imbi12d | ⊢ ( 𝑘 = 0 → ( ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ↔ ( 0 ≠ 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 77 | 73 76 | anbi12d | ⊢ ( 𝑘 = 0 → ( ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ↔ ( ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 0 ≠ 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) |
| 78 | neeq1 | ⊢ ( 𝑘 = 1 → ( 𝑘 ≠ 1 ↔ 1 ≠ 1 ) ) | |
| 79 | fveq2 | ⊢ ( 𝑘 = 1 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 1 ) ) | |
| 80 | 79 | neeq1d | ⊢ ( 𝑘 = 1 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ↔ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 81 | 78 80 | imbi12d | ⊢ ( 𝑘 = 1 → ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ↔ ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
| 82 | neeq1 | ⊢ ( 𝑘 = 1 → ( 𝑘 ≠ 2 ↔ 1 ≠ 2 ) ) | |
| 83 | 79 | neeq1d | ⊢ ( 𝑘 = 1 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ↔ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 84 | 82 83 | imbi12d | ⊢ ( 𝑘 = 1 → ( ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ↔ ( 1 ≠ 2 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 85 | 81 84 | anbi12d | ⊢ ( 𝑘 = 1 → ( ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ↔ ( ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 1 ≠ 2 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) |
| 86 | 68 69 77 85 | ralpr | ⊢ ( ∀ 𝑘 ∈ { 0 , 1 } ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ↔ ( ( ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 0 ≠ 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ∧ ( ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 1 ≠ 2 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) |
| 87 | 2ex | ⊢ 2 ∈ V | |
| 88 | 3ex | ⊢ 3 ∈ V | |
| 89 | neeq1 | ⊢ ( 𝑘 = 2 → ( 𝑘 ≠ 1 ↔ 2 ≠ 1 ) ) | |
| 90 | fveq2 | ⊢ ( 𝑘 = 2 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 2 ) ) | |
| 91 | 90 | neeq1d | ⊢ ( 𝑘 = 2 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ↔ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 92 | 89 91 | imbi12d | ⊢ ( 𝑘 = 2 → ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ↔ ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
| 93 | neeq1 | ⊢ ( 𝑘 = 2 → ( 𝑘 ≠ 2 ↔ 2 ≠ 2 ) ) | |
| 94 | 90 | neeq1d | ⊢ ( 𝑘 = 2 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ↔ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 95 | 93 94 | imbi12d | ⊢ ( 𝑘 = 2 → ( ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ↔ ( 2 ≠ 2 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 96 | 92 95 | anbi12d | ⊢ ( 𝑘 = 2 → ( ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ↔ ( ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 2 ≠ 2 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) |
| 97 | neeq1 | ⊢ ( 𝑘 = 3 → ( 𝑘 ≠ 1 ↔ 3 ≠ 1 ) ) | |
| 98 | fveq2 | ⊢ ( 𝑘 = 3 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 3 ) ) | |
| 99 | 98 | neeq1d | ⊢ ( 𝑘 = 3 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ↔ ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 100 | 97 99 | imbi12d | ⊢ ( 𝑘 = 3 → ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ↔ ( 3 ≠ 1 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
| 101 | neeq1 | ⊢ ( 𝑘 = 3 → ( 𝑘 ≠ 2 ↔ 3 ≠ 2 ) ) | |
| 102 | 98 | neeq1d | ⊢ ( 𝑘 = 3 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ↔ ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 103 | 101 102 | imbi12d | ⊢ ( 𝑘 = 3 → ( ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ↔ ( 3 ≠ 2 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 104 | 100 103 | anbi12d | ⊢ ( 𝑘 = 3 → ( ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ↔ ( ( 3 ≠ 1 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 3 ≠ 2 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) |
| 105 | 87 88 96 104 | ralpr | ⊢ ( ∀ 𝑘 ∈ { 2 , 3 } ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ↔ ( ( ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 2 ≠ 2 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 2 ) ) ) ∧ ( ( 3 ≠ 1 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 3 ≠ 2 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) |
| 106 | 86 105 | anbi12i | ⊢ ( ( ∀ 𝑘 ∈ { 0 , 1 } ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ∧ ∀ 𝑘 ∈ { 2 , 3 } ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ↔ ( ( ( ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 0 ≠ 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ∧ ( ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 1 ≠ 2 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ∧ ( ( ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 2 ≠ 2 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 2 ) ) ) ∧ ( ( 3 ≠ 1 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 3 ≠ 2 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) ) |
| 107 | 66 67 106 | 3bitri | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ↔ ( ( ( ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 0 ≠ 2 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 2 ) ) ) ∧ ( ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 1 ≠ 2 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ∧ ( ( ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 2 ≠ 2 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 2 ) ) ) ∧ ( ( 3 ≠ 1 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 3 ≠ 2 → ( 𝑃 ‘ 3 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) ) ) |
| 108 | 59 107 | sylibr | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 109 | 2 | fveq2i | ⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 𝐽 𝐾 𝐿 ”〉 ) |
| 110 | s3len | ⊢ ( ♯ ‘ 〈“ 𝐽 𝐾 𝐿 ”〉 ) = 3 | |
| 111 | 109 110 | eqtri | ⊢ ( ♯ ‘ 𝐹 ) = 3 |
| 112 | 111 | oveq2i | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( 1 ..^ 3 ) |
| 113 | fzo13pr | ⊢ ( 1 ..^ 3 ) = { 1 , 2 } | |
| 114 | 112 113 | eqtri | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = { 1 , 2 } |
| 115 | 114 | raleqi | ⊢ ( ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ { 1 , 2 } ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |
| 116 | neeq2 | ⊢ ( 𝑗 = 1 → ( 𝑘 ≠ 𝑗 ↔ 𝑘 ≠ 1 ) ) | |
| 117 | fveq2 | ⊢ ( 𝑗 = 1 → ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 1 ) ) | |
| 118 | 117 | neeq2d | ⊢ ( 𝑗 = 1 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ↔ ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
| 119 | 116 118 | imbi12d | ⊢ ( 𝑗 = 1 → ( ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
| 120 | neeq2 | ⊢ ( 𝑗 = 2 → ( 𝑘 ≠ 𝑗 ↔ 𝑘 ≠ 2 ) ) | |
| 121 | fveq2 | ⊢ ( 𝑗 = 2 → ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 2 ) ) | |
| 122 | 121 | neeq2d | ⊢ ( 𝑗 = 2 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ↔ ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) |
| 123 | 120 122 | imbi12d | ⊢ ( 𝑗 = 2 → ( ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 124 | 69 87 119 123 | ralpr | ⊢ ( ∀ 𝑗 ∈ { 1 , 2 } ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 125 | 115 124 | bitri | ⊢ ( ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 126 | 125 | ralbii | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 𝑘 ≠ 2 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 2 ) ) ) ) |
| 127 | 108 126 | sylibr | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |