This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Morphisms between two terminal objects are inverses. (Contributed by AV, 18-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termoeu1.c | |- ( ph -> C e. Cat ) |
|
| termoeu1.a | |- ( ph -> A e. ( TermO ` C ) ) |
||
| termoeu1.b | |- ( ph -> B e. ( TermO ` C ) ) |
||
| Assertion | 2termoinv | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> F ( A ( Inv ` C ) B ) G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termoeu1.c | |- ( ph -> C e. Cat ) |
|
| 2 | termoeu1.a | |- ( ph -> A e. ( TermO ` C ) ) |
|
| 3 | termoeu1.b | |- ( ph -> B e. ( TermO ` C ) ) |
|
| 4 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 5 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 6 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 7 | 1 | 3ad2ant1 | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> C e. Cat ) |
| 8 | termoo | |- ( C e. Cat -> ( A e. ( TermO ` C ) -> A e. ( Base ` C ) ) ) |
|
| 9 | 1 2 8 | sylc | |- ( ph -> A e. ( Base ` C ) ) |
| 10 | 9 | 3ad2ant1 | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> A e. ( Base ` C ) ) |
| 11 | termoo | |- ( C e. Cat -> ( B e. ( TermO ` C ) -> B e. ( Base ` C ) ) ) |
|
| 12 | 1 3 11 | sylc | |- ( ph -> B e. ( Base ` C ) ) |
| 13 | 12 | 3ad2ant1 | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> B e. ( Base ` C ) ) |
| 14 | simp3 | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> F e. ( A ( Hom ` C ) B ) ) |
|
| 15 | simp2 | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> G e. ( B ( Hom ` C ) A ) ) |
|
| 16 | 4 5 6 7 10 13 10 14 15 | catcocl | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( G ( <. A , B >. ( comp ` C ) A ) F ) e. ( A ( Hom ` C ) A ) ) |
| 17 | 4 5 1 | termoid | |- ( ( ph /\ A e. ( TermO ` C ) ) -> ( A ( Hom ` C ) A ) = { ( ( Id ` C ) ` A ) } ) |
| 18 | 2 17 | mpdan | |- ( ph -> ( A ( Hom ` C ) A ) = { ( ( Id ` C ) ` A ) } ) |
| 19 | 18 | 3ad2ant1 | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( A ( Hom ` C ) A ) = { ( ( Id ` C ) ` A ) } ) |
| 20 | 19 | eleq2d | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( ( G ( <. A , B >. ( comp ` C ) A ) F ) e. ( A ( Hom ` C ) A ) <-> ( G ( <. A , B >. ( comp ` C ) A ) F ) e. { ( ( Id ` C ) ` A ) } ) ) |
| 21 | elsni | |- ( ( G ( <. A , B >. ( comp ` C ) A ) F ) e. { ( ( Id ` C ) ` A ) } -> ( G ( <. A , B >. ( comp ` C ) A ) F ) = ( ( Id ` C ) ` A ) ) |
|
| 22 | 20 21 | biimtrdi | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( ( G ( <. A , B >. ( comp ` C ) A ) F ) e. ( A ( Hom ` C ) A ) -> ( G ( <. A , B >. ( comp ` C ) A ) F ) = ( ( Id ` C ) ` A ) ) ) |
| 23 | 16 22 | mpd | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( G ( <. A , B >. ( comp ` C ) A ) F ) = ( ( Id ` C ) ` A ) ) |
| 24 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 25 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 26 | 4 5 6 24 25 7 10 13 14 15 | issect2 | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( F ( A ( Sect ` C ) B ) G <-> ( G ( <. A , B >. ( comp ` C ) A ) F ) = ( ( Id ` C ) ` A ) ) ) |
| 27 | 23 26 | mpbird | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> F ( A ( Sect ` C ) B ) G ) |
| 28 | 4 5 6 7 13 10 13 15 14 | catcocl | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( F ( <. B , A >. ( comp ` C ) B ) G ) e. ( B ( Hom ` C ) B ) ) |
| 29 | 4 5 1 | termoid | |- ( ( ph /\ B e. ( TermO ` C ) ) -> ( B ( Hom ` C ) B ) = { ( ( Id ` C ) ` B ) } ) |
| 30 | 3 29 | mpdan | |- ( ph -> ( B ( Hom ` C ) B ) = { ( ( Id ` C ) ` B ) } ) |
| 31 | 30 | 3ad2ant1 | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( B ( Hom ` C ) B ) = { ( ( Id ` C ) ` B ) } ) |
| 32 | 31 | eleq2d | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( ( F ( <. B , A >. ( comp ` C ) B ) G ) e. ( B ( Hom ` C ) B ) <-> ( F ( <. B , A >. ( comp ` C ) B ) G ) e. { ( ( Id ` C ) ` B ) } ) ) |
| 33 | elsni | |- ( ( F ( <. B , A >. ( comp ` C ) B ) G ) e. { ( ( Id ` C ) ` B ) } -> ( F ( <. B , A >. ( comp ` C ) B ) G ) = ( ( Id ` C ) ` B ) ) |
|
| 34 | 32 33 | biimtrdi | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( ( F ( <. B , A >. ( comp ` C ) B ) G ) e. ( B ( Hom ` C ) B ) -> ( F ( <. B , A >. ( comp ` C ) B ) G ) = ( ( Id ` C ) ` B ) ) ) |
| 35 | 28 34 | mpd | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( F ( <. B , A >. ( comp ` C ) B ) G ) = ( ( Id ` C ) ` B ) ) |
| 36 | 4 5 6 24 25 7 13 10 15 14 | issect2 | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( G ( B ( Sect ` C ) A ) F <-> ( F ( <. B , A >. ( comp ` C ) B ) G ) = ( ( Id ` C ) ` B ) ) ) |
| 37 | 35 36 | mpbird | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> G ( B ( Sect ` C ) A ) F ) |
| 38 | eqid | |- ( Inv ` C ) = ( Inv ` C ) |
|
| 39 | 4 38 1 9 12 25 | isinv | |- ( ph -> ( F ( A ( Inv ` C ) B ) G <-> ( F ( A ( Sect ` C ) B ) G /\ G ( B ( Sect ` C ) A ) F ) ) ) |
| 40 | 39 | 3ad2ant1 | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> ( F ( A ( Inv ` C ) B ) G <-> ( F ( A ( Sect ` C ) B ) G /\ G ( B ( Sect ` C ) A ) F ) ) ) |
| 41 | 27 37 40 | mpbir2and | |- ( ( ph /\ G e. ( B ( Hom ` C ) A ) /\ F e. ( A ( Hom ` C ) B ) ) -> F ( A ( Inv ` C ) B ) G ) |