This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 2reu5 . This lemma is interesting in its own right, showing that existential restriction in the last conjunct (the "at most one" part) is optional; compare rmo2 . (Contributed by Alexander van der Vekens, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2reu5lem3 | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2reu5lem1 | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑥 ∃! 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) | |
| 2 | 2reu5lem2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) | |
| 3 | 1 2 | anbi12i | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 ) ↔ ( ∃! 𝑥 ∃! 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ∧ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 4 | 2eu5 | ⊢ ( ( ∃! 𝑥 ∃! 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ∧ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) | |
| 5 | 3anass | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 7 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 8 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) | |
| 9 | 8 | bicomi | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 𝜑 ) |
| 10 | 9 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 11 | 6 7 10 | 3bitri | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 12 | 11 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 13 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 14 | 12 13 | bitr4i | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) |
| 15 | 3anan12 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 16 | 15 | imbi1i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 17 | impexp | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( 𝑦 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) | |
| 18 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) | |
| 19 | 18 | imbi2i | ⊢ ( ( 𝑦 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) |
| 20 | 16 17 19 | 3bitri | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) |
| 21 | 20 | albii | ⊢ ( ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) |
| 22 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) | |
| 23 | r19.21v | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) | |
| 24 | 21 22 23 | 3bitr2i | ⊢ ( ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 25 | 24 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 26 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) | |
| 27 | 25 26 | bitr4i | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 28 | 27 | exbii | ⊢ ( ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 29 | 28 | exbii | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 30 | 14 29 | anbi12i | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 31 | 3 4 30 | 3bitri | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |