This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification, analogous to 2eu5 and reu3 . (Contributed by Alexander van der Vekens, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2reu5 | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29r | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) → ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) | |
| 2 | r19.29r | ⊢ ( ( ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) | |
| 3 | 2 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 4 | pm3.35 | ⊢ ( ( 𝜑 ∧ ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) | |
| 5 | 4 | reximi | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) → ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) |
| 6 | 5 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) |
| 7 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 8 | eleq1w | ⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵 ) ) | |
| 9 | 7 8 | bi2anan9 | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 10 | 9 | biimpac | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) |
| 11 | 10 | ancomd | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ) |
| 12 | 11 | ex | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 13 | 12 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ) |
| 14 | 1 3 6 13 | 4syl | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) → ( 𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ) |
| 15 | 14 | ex | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 16 | 15 | pm4.71rd | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( 𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) |
| 17 | anass | ⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ( 𝑤 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) | |
| 18 | 16 17 | bitrdi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( 𝑤 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) ) |
| 19 | 18 | 2exbidv | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) ) |
| 20 | 19 | pm5.32i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) ) |
| 21 | 2reu5lem3 | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) | |
| 22 | df-rex | ⊢ ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) | |
| 23 | r19.42v | ⊢ ( ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) | |
| 24 | df-rex | ⊢ ( ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) | |
| 25 | 23 24 | bitr3i | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) |
| 26 | 25 | exbii | ⊢ ( ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ∃ 𝑧 ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) |
| 27 | 22 26 | bitri | ⊢ ( ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) |
| 28 | 27 | anbi2i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) ) |
| 29 | 20 21 28 | 3bitr4i | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |