This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 2reu5 . Note that E! x e. A E! y e. B ph does not mean "there is exactly one x in A and exactly one y in B such that ph holds"; see comment for 2eu5 . (Contributed by Alexander van der Vekens, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2reu5lem1 | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑥 ∃! 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu | ⊢ ( ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) | |
| 2 | 1 | reubii | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
| 3 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 4 | euanv | ⊢ ( ∃! 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 5 | 4 | bicomi | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ∃! 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 6 | 3anass | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 7 | 6 | bicomi | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
| 8 | 7 | eubii | ⊢ ( ∃! 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ∃! 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
| 9 | 5 8 | bitri | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ∃! 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
| 10 | 9 | eubii | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ∃! 𝑥 ∃! 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
| 11 | 3 10 | bitri | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∃! 𝑥 ∃! 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
| 12 | 2 11 | bitri | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑥 ∃! 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |