This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Dec-2001) (Proof shortened by Wolf Lammen, 23-Apr-2023) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2eu3 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ∃* 𝑥 𝜑 ∨ ∃* 𝑦 𝜑 ) → ( ( ∃! 𝑥 ∃! 𝑦 𝜑 ∧ ∃! 𝑦 ∃! 𝑥 𝜑 ) ↔ ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmo1 | ⊢ Ⅎ 𝑦 ∃* 𝑦 𝜑 | |
| 2 | 1 | 19.31 | ⊢ ( ∀ 𝑦 ( ∃* 𝑥 𝜑 ∨ ∃* 𝑦 𝜑 ) ↔ ( ∀ 𝑦 ∃* 𝑥 𝜑 ∨ ∃* 𝑦 𝜑 ) ) |
| 3 | 2 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ∃* 𝑥 𝜑 ∨ ∃* 𝑦 𝜑 ) ↔ ∀ 𝑥 ( ∀ 𝑦 ∃* 𝑥 𝜑 ∨ ∃* 𝑦 𝜑 ) ) |
| 4 | nfmo1 | ⊢ Ⅎ 𝑥 ∃* 𝑥 𝜑 | |
| 5 | 4 | nfal | ⊢ Ⅎ 𝑥 ∀ 𝑦 ∃* 𝑥 𝜑 |
| 6 | 5 | 19.32 | ⊢ ( ∀ 𝑥 ( ∀ 𝑦 ∃* 𝑥 𝜑 ∨ ∃* 𝑦 𝜑 ) ↔ ( ∀ 𝑦 ∃* 𝑥 𝜑 ∨ ∀ 𝑥 ∃* 𝑦 𝜑 ) ) |
| 7 | 3 6 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ∃* 𝑥 𝜑 ∨ ∃* 𝑦 𝜑 ) ↔ ( ∀ 𝑦 ∃* 𝑥 𝜑 ∨ ∀ 𝑥 ∃* 𝑦 𝜑 ) ) |
| 8 | 2eu1 | ⊢ ( ∀ 𝑦 ∃* 𝑥 𝜑 → ( ∃! 𝑦 ∃! 𝑥 𝜑 ↔ ( ∃! 𝑦 ∃ 𝑥 𝜑 ∧ ∃! 𝑥 ∃ 𝑦 𝜑 ) ) ) | |
| 9 | 8 | biimpd | ⊢ ( ∀ 𝑦 ∃* 𝑥 𝜑 → ( ∃! 𝑦 ∃! 𝑥 𝜑 → ( ∃! 𝑦 ∃ 𝑥 𝜑 ∧ ∃! 𝑥 ∃ 𝑦 𝜑 ) ) ) |
| 10 | ancom | ⊢ ( ( ∃! 𝑦 ∃ 𝑥 𝜑 ∧ ∃! 𝑥 ∃ 𝑦 𝜑 ) ↔ ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ) | |
| 11 | 9 10 | imbitrdi | ⊢ ( ∀ 𝑦 ∃* 𝑥 𝜑 → ( ∃! 𝑦 ∃! 𝑥 𝜑 → ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ) ) |
| 12 | 2eu1 | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃! 𝑥 ∃! 𝑦 𝜑 ↔ ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ) ) | |
| 13 | 12 | biimpd | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃! 𝑥 ∃! 𝑦 𝜑 → ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ) ) |
| 14 | 11 13 | jaoa | ⊢ ( ( ∀ 𝑦 ∃* 𝑥 𝜑 ∨ ∀ 𝑥 ∃* 𝑦 𝜑 ) → ( ( ∃! 𝑦 ∃! 𝑥 𝜑 ∧ ∃! 𝑥 ∃! 𝑦 𝜑 ) → ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ) ) |
| 15 | 14 | ancomsd | ⊢ ( ( ∀ 𝑦 ∃* 𝑥 𝜑 ∨ ∀ 𝑥 ∃* 𝑦 𝜑 ) → ( ( ∃! 𝑥 ∃! 𝑦 𝜑 ∧ ∃! 𝑦 ∃! 𝑥 𝜑 ) → ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ) ) |
| 16 | 2exeu | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) → ∃! 𝑥 ∃! 𝑦 𝜑 ) | |
| 17 | 2exeu | ⊢ ( ( ∃! 𝑦 ∃ 𝑥 𝜑 ∧ ∃! 𝑥 ∃ 𝑦 𝜑 ) → ∃! 𝑦 ∃! 𝑥 𝜑 ) | |
| 18 | 17 | ancoms | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) → ∃! 𝑦 ∃! 𝑥 𝜑 ) |
| 19 | 16 18 | jca | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) → ( ∃! 𝑥 ∃! 𝑦 𝜑 ∧ ∃! 𝑦 ∃! 𝑥 𝜑 ) ) |
| 20 | 15 19 | impbid1 | ⊢ ( ( ∀ 𝑦 ∃* 𝑥 𝜑 ∨ ∀ 𝑥 ∃* 𝑦 𝜑 ) → ( ( ∃! 𝑥 ∃! 𝑦 𝜑 ∧ ∃! 𝑦 ∃! 𝑥 𝜑 ) ↔ ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ) ) |
| 21 | 7 20 | sylbi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ∃* 𝑥 𝜑 ∨ ∃* 𝑦 𝜑 ) → ( ( ∃! 𝑥 ∃! 𝑦 𝜑 ∧ ∃! 𝑦 ∃! 𝑥 𝜑 ) ↔ ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ) ) |