This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 19.32 of Margaris p. 90. See 19.32v for a version requiring fewer axioms. (Contributed by NM, 14-May-1993) (Revised by Mario Carneiro, 24-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 19.32.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| Assertion | 19.32 | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∨ ∀ 𝑥 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.32.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | 1 | nfn | ⊢ Ⅎ 𝑥 ¬ 𝜑 |
| 3 | 2 | 19.21 | ⊢ ( ∀ 𝑥 ( ¬ 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 → ∀ 𝑥 𝜓 ) ) |
| 4 | df-or | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 → 𝜓 ) ) | |
| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ∀ 𝑥 ( ¬ 𝜑 → 𝜓 ) ) |
| 6 | df-or | ⊢ ( ( 𝜑 ∨ ∀ 𝑥 𝜓 ) ↔ ( ¬ 𝜑 → ∀ 𝑥 𝜓 ) ) | |
| 7 | 3 5 6 | 3bitr4i | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∨ ∀ 𝑥 𝜓 ) ) |