This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker 2eu1v when possible. (Contributed by NM, 3-Dec-2001) (Proof shortened by Wolf Lammen, 23-Apr-2023) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2eu1 | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃! 𝑥 ∃! 𝑦 𝜑 ↔ ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2eu2ex | ⊢ ( ∃! 𝑥 ∃! 𝑦 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜑 ) | |
| 2 | moeu | ⊢ ( ∃* 𝑦 𝜑 ↔ ( ∃ 𝑦 𝜑 → ∃! 𝑦 𝜑 ) ) | |
| 3 | 2 | albii | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝜑 ↔ ∀ 𝑥 ( ∃ 𝑦 𝜑 → ∃! 𝑦 𝜑 ) ) |
| 4 | euim | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∀ 𝑥 ( ∃ 𝑦 𝜑 → ∃! 𝑦 𝜑 ) ) → ( ∃! 𝑥 ∃! 𝑦 𝜑 → ∃! 𝑥 ∃ 𝑦 𝜑 ) ) | |
| 5 | 3 4 | sylan2b | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∀ 𝑥 ∃* 𝑦 𝜑 ) → ( ∃! 𝑥 ∃! 𝑦 𝜑 → ∃! 𝑥 ∃ 𝑦 𝜑 ) ) |
| 6 | 5 | ex | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 → ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃! 𝑥 ∃! 𝑦 𝜑 → ∃! 𝑥 ∃ 𝑦 𝜑 ) ) ) |
| 7 | 1 6 | syl | ⊢ ( ∃! 𝑥 ∃! 𝑦 𝜑 → ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃! 𝑥 ∃! 𝑦 𝜑 → ∃! 𝑥 ∃ 𝑦 𝜑 ) ) ) |
| 8 | 7 | pm2.43b | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃! 𝑥 ∃! 𝑦 𝜑 → ∃! 𝑥 ∃ 𝑦 𝜑 ) ) |
| 9 | 2euswap | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃! 𝑥 ∃ 𝑦 𝜑 → ∃! 𝑦 ∃ 𝑥 𝜑 ) ) | |
| 10 | 8 9 | syld | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃! 𝑥 ∃! 𝑦 𝜑 → ∃! 𝑦 ∃ 𝑥 𝜑 ) ) |
| 11 | 8 10 | jcad | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃! 𝑥 ∃! 𝑦 𝜑 → ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ) ) |
| 12 | 2exeu | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) → ∃! 𝑥 ∃! 𝑦 𝜑 ) | |
| 13 | 11 12 | impbid1 | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃! 𝑥 ∃! 𝑦 𝜑 ↔ ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ) ) |