This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of divisors for a prime is P + 1 because the only divisors are 1 and P . (Contributed by Mario Carneiro, 17-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1sgmprm | ⊢ ( 𝑃 ∈ ℙ → ( 1 σ 𝑃 ) = ( 𝑃 + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 3 | sgmppw | ⊢ ( ( 1 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 1 ∈ ℕ0 ) → ( 1 σ ( 𝑃 ↑ 1 ) ) = Σ 𝑘 ∈ ( 0 ... 1 ) ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) ) | |
| 4 | 1 2 3 | mp3an13 | ⊢ ( 𝑃 ∈ ℙ → ( 1 σ ( 𝑃 ↑ 1 ) ) = Σ 𝑘 ∈ ( 0 ... 1 ) ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) ) |
| 5 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 6 | 5 | nncnd | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
| 7 | 6 | exp1d | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 1 ) = 𝑃 ) |
| 8 | 7 | oveq2d | ⊢ ( 𝑃 ∈ ℙ → ( 1 σ ( 𝑃 ↑ 1 ) ) = ( 1 σ 𝑃 ) ) |
| 9 | 6 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑘 ∈ ( 0 ... 1 ) ) → 𝑃 ∈ ℂ ) |
| 10 | 9 | cxp1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑘 ∈ ( 0 ... 1 ) ) → ( 𝑃 ↑𝑐 1 ) = 𝑃 ) |
| 11 | 10 | oveq1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑘 ∈ ( 0 ... 1 ) ) → ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) = ( 𝑃 ↑ 𝑘 ) ) |
| 12 | 11 | sumeq2dv | ⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 1 ) ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 1 ) ( 𝑃 ↑ 𝑘 ) ) |
| 13 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 14 | 13 | oveq2i | ⊢ ( 0 ... ( 1 − 1 ) ) = ( 0 ... 0 ) |
| 15 | 14 | sumeq1i | ⊢ Σ 𝑘 ∈ ( 0 ... ( 1 − 1 ) ) ( 𝑃 ↑ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝑃 ↑ 𝑘 ) |
| 16 | 0z | ⊢ 0 ∈ ℤ | |
| 17 | 6 | exp0d | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 0 ) = 1 ) |
| 18 | 17 1 | eqeltrdi | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 0 ) ∈ ℂ ) |
| 19 | oveq2 | ⊢ ( 𝑘 = 0 → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 0 ) ) | |
| 20 | 19 | fsum1 | ⊢ ( ( 0 ∈ ℤ ∧ ( 𝑃 ↑ 0 ) ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 0 ) ) |
| 21 | 16 18 20 | sylancr | ⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 0 ) ) |
| 22 | 21 17 | eqtrd | ⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝑃 ↑ 𝑘 ) = 1 ) |
| 23 | 15 22 | eqtrid | ⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... ( 1 − 1 ) ) ( 𝑃 ↑ 𝑘 ) = 1 ) |
| 24 | 23 7 | oveq12d | ⊢ ( 𝑃 ∈ ℙ → ( Σ 𝑘 ∈ ( 0 ... ( 1 − 1 ) ) ( 𝑃 ↑ 𝑘 ) + ( 𝑃 ↑ 1 ) ) = ( 1 + 𝑃 ) ) |
| 25 | 2 | a1i | ⊢ ( 𝑃 ∈ ℙ → 1 ∈ ℕ0 ) |
| 26 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 27 | 25 26 | eleqtrdi | ⊢ ( 𝑃 ∈ ℙ → 1 ∈ ( ℤ≥ ‘ 0 ) ) |
| 28 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 1 ) → 𝑘 ∈ ℕ0 ) | |
| 29 | expcl | ⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑘 ) ∈ ℂ ) | |
| 30 | 6 28 29 | syl2an | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑘 ∈ ( 0 ... 1 ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℂ ) |
| 31 | oveq2 | ⊢ ( 𝑘 = 1 → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 1 ) ) | |
| 32 | 27 30 31 | fsumm1 | ⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 1 ) ( 𝑃 ↑ 𝑘 ) = ( Σ 𝑘 ∈ ( 0 ... ( 1 − 1 ) ) ( 𝑃 ↑ 𝑘 ) + ( 𝑃 ↑ 1 ) ) ) |
| 33 | addcom | ⊢ ( ( 𝑃 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑃 + 1 ) = ( 1 + 𝑃 ) ) | |
| 34 | 6 1 33 | sylancl | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 + 1 ) = ( 1 + 𝑃 ) ) |
| 35 | 24 32 34 | 3eqtr4d | ⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 1 ) ( 𝑃 ↑ 𝑘 ) = ( 𝑃 + 1 ) ) |
| 36 | 12 35 | eqtrd | ⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 1 ) ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) = ( 𝑃 + 1 ) ) |
| 37 | 4 8 36 | 3eqtr3d | ⊢ ( 𝑃 ∈ ℙ → ( 1 σ 𝑃 ) = ( 𝑃 + 1 ) ) |