This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of the divisors of 2 ^ ( N - 1 ) . (Contributed by Mario Carneiro, 17-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1sgm2ppw | ⊢ ( 𝑁 ∈ ℕ → ( 1 σ ( 2 ↑ ( 𝑁 − 1 ) ) ) = ( ( 2 ↑ 𝑁 ) − 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | 2prm | ⊢ 2 ∈ ℙ | |
| 3 | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) | |
| 4 | sgmppw | ⊢ ( ( 1 ∈ ℂ ∧ 2 ∈ ℙ ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( 1 σ ( 2 ↑ ( 𝑁 − 1 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 2 ↑𝑐 1 ) ↑ 𝑘 ) ) | |
| 5 | 1 2 3 4 | mp3an12i | ⊢ ( 𝑁 ∈ ℕ → ( 1 σ ( 2 ↑ ( 𝑁 − 1 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 2 ↑𝑐 1 ) ↑ 𝑘 ) ) |
| 6 | 2cn | ⊢ 2 ∈ ℂ | |
| 7 | cxp1 | ⊢ ( 2 ∈ ℂ → ( 2 ↑𝑐 1 ) = 2 ) | |
| 8 | 6 7 | mp1i | ⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 2 ↑𝑐 1 ) = 2 ) |
| 9 | 8 | oveq1d | ⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 2 ↑𝑐 1 ) ↑ 𝑘 ) = ( 2 ↑ 𝑘 ) ) |
| 10 | 9 | sumeq2i | ⊢ Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 2 ↑𝑐 1 ) ↑ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 2 ↑ 𝑘 ) |
| 11 | 6 | a1i | ⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
| 12 | 1ne2 | ⊢ 1 ≠ 2 | |
| 13 | 12 | necomi | ⊢ 2 ≠ 1 |
| 14 | 13 | a1i | ⊢ ( 𝑁 ∈ ℕ → 2 ≠ 1 ) |
| 15 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 16 | 11 14 15 | geoser | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 2 ↑ 𝑘 ) = ( ( 1 − ( 2 ↑ 𝑁 ) ) / ( 1 − 2 ) ) ) |
| 17 | 10 16 | eqtrid | ⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 2 ↑𝑐 1 ) ↑ 𝑘 ) = ( ( 1 − ( 2 ↑ 𝑁 ) ) / ( 1 − 2 ) ) ) |
| 18 | 2nn | ⊢ 2 ∈ ℕ | |
| 19 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑁 ) ∈ ℕ ) | |
| 20 | 18 15 19 | sylancr | ⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ 𝑁 ) ∈ ℕ ) |
| 21 | 20 | nncnd | ⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ 𝑁 ) ∈ ℂ ) |
| 22 | subcl | ⊢ ( ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 2 ↑ 𝑁 ) − 1 ) ∈ ℂ ) | |
| 23 | 21 1 22 | sylancl | ⊢ ( 𝑁 ∈ ℕ → ( ( 2 ↑ 𝑁 ) − 1 ) ∈ ℂ ) |
| 24 | 1 | a1i | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) |
| 25 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 26 | 25 | a1i | ⊢ ( 𝑁 ∈ ℕ → 1 ≠ 0 ) |
| 27 | 23 24 26 | div2negd | ⊢ ( 𝑁 ∈ ℕ → ( - ( ( 2 ↑ 𝑁 ) − 1 ) / - 1 ) = ( ( ( 2 ↑ 𝑁 ) − 1 ) / 1 ) ) |
| 28 | negsubdi2 | ⊢ ( ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ 1 ∈ ℂ ) → - ( ( 2 ↑ 𝑁 ) − 1 ) = ( 1 − ( 2 ↑ 𝑁 ) ) ) | |
| 29 | 21 1 28 | sylancl | ⊢ ( 𝑁 ∈ ℕ → - ( ( 2 ↑ 𝑁 ) − 1 ) = ( 1 − ( 2 ↑ 𝑁 ) ) ) |
| 30 | df-neg | ⊢ - 1 = ( 0 − 1 ) | |
| 31 | 0cn | ⊢ 0 ∈ ℂ | |
| 32 | pnpcan | ⊢ ( ( 1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 1 + 0 ) − ( 1 + 1 ) ) = ( 0 − 1 ) ) | |
| 33 | 1 31 1 32 | mp3an | ⊢ ( ( 1 + 0 ) − ( 1 + 1 ) ) = ( 0 − 1 ) |
| 34 | 1p0e1 | ⊢ ( 1 + 0 ) = 1 | |
| 35 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 36 | 34 35 | oveq12i | ⊢ ( ( 1 + 0 ) − ( 1 + 1 ) ) = ( 1 − 2 ) |
| 37 | 30 33 36 | 3eqtr2i | ⊢ - 1 = ( 1 − 2 ) |
| 38 | 37 | a1i | ⊢ ( 𝑁 ∈ ℕ → - 1 = ( 1 − 2 ) ) |
| 39 | 29 38 | oveq12d | ⊢ ( 𝑁 ∈ ℕ → ( - ( ( 2 ↑ 𝑁 ) − 1 ) / - 1 ) = ( ( 1 − ( 2 ↑ 𝑁 ) ) / ( 1 − 2 ) ) ) |
| 40 | 23 | div1d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 ↑ 𝑁 ) − 1 ) / 1 ) = ( ( 2 ↑ 𝑁 ) − 1 ) ) |
| 41 | 27 39 40 | 3eqtr3d | ⊢ ( 𝑁 ∈ ℕ → ( ( 1 − ( 2 ↑ 𝑁 ) ) / ( 1 − 2 ) ) = ( ( 2 ↑ 𝑁 ) − 1 ) ) |
| 42 | 5 17 41 | 3eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( 1 σ ( 2 ↑ ( 𝑁 − 1 ) ) ) = ( ( 2 ↑ 𝑁 ) − 1 ) ) |